Skip to main content

Spacecraft Autonomous Reaction Capabilities, Control Approaches, and Self-aware Computing

  • Chapter
  • First Online:
Self-Aware Computing Systems

Abstract

Space exploration missions require very challenging autonomous reaction capabilities, as spacecraft have to react appropriately to the partially unknown environment in time-critical situations. Here, direct human interaction is often impossible due to significant signal propagation delays related to the huge distances. We discuss existing solution strategies for autonomy in space and exemplified by the missions CASSINI–HUYGEN (landing on the Saturnian moon) and ROSETTA (the accompanying and landing on a comet), and the NetSat project (low Earth orbit formations). Based on the state of the art, we outline how self-aware computing may improve autonomy in future space missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kyle Alfriend, Srinivas Rao Vadali, Pini Gurfil, Jonathan How, and Louis Breger. Spacecraft Formation Flying: Dynamics, Control and Navigation. Elsevier Astrodynamics Series. Elsevier, 2010.

    Google Scholar 

  2. F. Ankersen, editor. 3rd International Symposium on Formation Flying, Missions and Technologies. ESA SP-654, 2008.

    Google Scholar 

  3. Karl Johan Astrom and Bjorn Wittenmark. Adaptive Control. Prentice Hall, 1994. [3] Astrom, K., B. Wittenmark, Adaptive Control, Addison-Wesley, 1989, 2d ed. 1994.

    Google Scholar 

  4. George A Bekey. Autonomous robots: from biological inspiration to implementation and control. MIT press, 2005.

    Google Scholar 

  5. Francesco Bullo, Jorge Cortés, and Sonia Martinez. Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms: A Mathematical Approach to Motion Coordination Algorithms. Princeton University Press, 2009.

    Google Scholar 

  6. Marco D’Errico. Distributed Space Missions for Earth System Monitoring, volume 31. Springer Science & Business Media, 2012.

    Google Scholar 

  7. Xiaohua Ge, Fuwen Yang, and Qing-Long Han. Distributed networked control systems: A brief overview. Information Sciences, pages –, 2015.

    Google Scholar 

  8. Ioan Doré Landau, Rogelio Lozano, Mohammed M’Saad, and Alireza Karimi. Adaptive control, volume 51. Springer Berlin, 1998.

    Google Scholar 

  9. K Schilling. Control aspects of interplanetary spacecrafts: An introduction to the CASSINI/HUYGENS mission. Control Engineering Practice, 3(11):1599–1601, 1995.

    Article  Google Scholar 

  10. K Schilling and W Flury. Autonomy and on-board mission management aspects for the CASSINI Titan probe. Acta Astronautica, 21(1):55–68, 1990.

    Article  Google Scholar 

  11. K Schilling, H Roth, and B Theobold. Autonomous on-comet operations aspects of the RoSETTA mission. Control Engineering Practice, 2(3):499–507, 1994.

    Article  Google Scholar 

  12. Klaus Schilling. Simulation of ROSETTA on-comet operations. In Annales Geophysicae, volume 10, pages 141–144, 1992.

    Google Scholar 

  13. Klaus Schilling. The HUYGENS Mission to Explore the Saturnian Moon Titan. 2005.

    Google Scholar 

  14. Klaus Schilling. Networked control of cooperating distributed pico-satellites. In 19th International Federation of Automatic Control World Congress, pages 7960–7964, 2014.

    Google Scholar 

  15. Klaus Schilling. Kleinstsatelliten - winzlinge im orbit. Spektrum der Wissenschaft, pages 48–51, May 2015.

    Google Scholar 

  16. Klaus Schilling, J De Lafontaine, and Hubert Roth. Autonomy capabilities of European deep space probes. Autonomous Robots, 3(1):19–30, 1996.

    Article  Google Scholar 

  17. KLAUS Schilling and MICHAEL Eiden. Huygens und Rosetta. Die geplanten planetaren Missionen der Europäer. Sterne und Weltraum, 29:428–437, 1990.

    Google Scholar 

  18. Schmidt M. Schilling, K. Communication in distributed satellite systems. In DErrico M. (ed.), Distributed Missions for Earth System Monitoring. Springer, 2012.

    Google Scholar 

  19. Schmidt M. Busch S. Schilling, K. Crucial technologies for distributed systems of pico-satellites. In . IAC-12-D1.2.4, editor, Proceedings 63rd International Astronautical Congress, Naples, Italy, 2012.

    Google Scholar 

  20. J. Schumann, T. Mbaya, O. J. Mengshoel, K. Pipatsrisawat, A. Srivastava, A. Choi, and A. Darwiche. Software health management with bayesian networks. Innov. Syst. Softw. Eng., 9(4):271–292, December 2013.

    Article  Google Scholar 

  21. Johann Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, and Corey Ippolito. Towards real-time, on-board, hardware-supported sensor and software health management for unmanned aerial systems. International Journal of Prognostics and Health Management (IJPHM), 6(1):1–27, June 2015.

    Google Scholar 

  22. Thomas B Sheridan. Telerobotics, automation, and human supervisory control. MIT press, 1992.

    Google Scholar 

  23. A. Srivastava and J. Han, editors. Data Mining in Systems Health Management: Detection, Diagnostics, and Prognostics. Chapman and Hall/CRC Press, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Schilling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schilling, K., Walter, J., Kounev, S. (2017). Spacecraft Autonomous Reaction Capabilities, Control Approaches, and Self-aware Computing. In: Kounev, S., Kephart, J., Milenkoski, A., Zhu, X. (eds) Self-Aware Computing Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-47474-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47474-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47472-4

  • Online ISBN: 978-3-319-47474-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics