Abstract
We present a network influence game that models players strategically seeding the opinions of nodes embedded in a social network. A social learning dynamic, whereby nodes repeatedly update their opinions to resemble those of their neighbors, spreads the seeded opinions through the network. After a fixed period of time, the dynamic halts and each player’s utility is determined by the relative strength of the opinions held by each node in the network vis-à-vis the other players. We show that the existence of a pure Nash equilibrium cannot be guaranteed in general. However, if the dynamics are allowed to progress for a sufficient amount of time so that a consensus among all of the nodes is obtained, then the existence of a pure Nash equilibrium can be guaranteed. The computational complexity of finding a pure strategy best response is shown to be \(\mathrm {NP}\)-complete, but can be efficiently approximated to within a \((1 - 1/e)\) factor of optimal by a simple greedy algorithm.
This research was conducted while S.D. Johnson was a graduate student at the University of California, Davis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
We use \(\varGamma ^T\) to denote the matrix \(\varGamma \) raised to the Tth power. For matrix transposition, we use the notation \(\varGamma ^\intercal \).
- 3.
A set function \(f : \varOmega \rightarrow \mathbb {R}\) is submodular if, for every \(X \subseteq Y \subset \varOmega \) and element \(x \in \varOmega \setminus Y\), we have \(f(X \cup \{x\}) - f(X) \ge f(Y \cup \{x\}) - f(Y)\).
References
Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: A note on competitive diffusion through social networks. Inf. Process. Lett. 110(6), 221–225 (2010)
Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O.: The diffusion of microfinance. Science 341(6144), 363–371 (2013)
Banerjee, A.V., Chandrasekhar, A., Duflo, E., Jackson, M.O.: Gossip: Identifying central individuals in a social network. Working Paper, August 2014
Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 306–311. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77105-0_31
Borodin, A., Filmus, Y., Oren, J.: Threshold models for competitive influence in social networks. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 539–550. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17572-5_48
DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)
DeMarzo, P.M., Vayanos, D., Zweibel, J.: Persuasion bias, social influence, and unidimensional opinions. Q. J. Econ. 118(3), 909–968 (2003)
Fotakis, D., Lykouris, T., Markakis, E., Obraztsova, S.: Influence maximization in switching-selection threshold models. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 122–133. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44803-8_11
Golub, B., Jackson, M.O.: How homophily affects the speed of contagion, best response and learning dynamics. Working Paper, September 2010
Golub, B., Jackson, M.O.: Naïve learning in social networks and the wisdom of crowds. Am. Econ. J. Microeconomics 2(1), 112–149 (2010)
Goyal, S., Heidari, H., Kearns, M.: Competitive contagion in networks. Games and Economic Behavior (2014) (in press)
Jackson, M.O.: Social and Economic Networks. Princeton University Press, Princeton (2008)
Jackson, M.O.: An overview of social networks and economic applications. In: Benhabib, J., Bisin, A., Jackson, M.O. (eds.) Handbook of Social Economics, chap. 12, pp. 511–585. North Holland, San Diego (2011)
Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146. ACM, New York (2003)
Mossel, E., Roch, S.: Submodularity of influence in social networks: from local to global. SIAM J. Comput. 39(6), 2176–2188 (2010)
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions—i. Math. Program. 14(1), 265–294 (1978)
Tzoumas, V., Amanatidis, C., Markakis, E.: A game-theoretic analysis of a competitive diffusion process over social networks. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 1–14. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35311-6_1
Acknowledgements
The authors gratefully acknowledge support from the US Army Research Office MURI Award No. W911NF-13-1-0340 and Cooperative Agreement No. W911NF-09-2-0053.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Johnson, S.D., George, J., D’Souza, R.M. (2017). Strategic Seeding of Rival Opinions. In: Cheng, J., Hossain, E., Zhang, H., Saad, W., Chatterjee, M. (eds) Game Theory for Networks. GameNets 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 174. Springer, Cham. https://doi.org/10.1007/978-3-319-47509-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-47509-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47508-0
Online ISBN: 978-3-319-47509-7
eBook Packages: Computer ScienceComputer Science (R0)