Skip to main content

Strategic Seeding of Rival Opinions

  • Conference paper
  • First Online:
Game Theory for Networks (GameNets 2016)

Abstract

We present a network influence game that models players strategically seeding the opinions of nodes embedded in a social network. A social learning dynamic, whereby nodes repeatedly update their opinions to resemble those of their neighbors, spreads the seeded opinions through the network. After a fixed period of time, the dynamic halts and each player’s utility is determined by the relative strength of the opinions held by each node in the network vis-à-vis the other players. We show that the existence of a pure Nash equilibrium cannot be guaranteed in general. However, if the dynamics are allowed to progress for a sufficient amount of time so that a consensus among all of the nodes is obtained, then the existence of a pure Nash equilibrium can be guaranteed. The computational complexity of finding a pure strategy best response is shown to be \(\mathrm {NP}\)-complete, but can be efficiently approximated to within a \((1 - 1/e)\) factor of optimal by a simple greedy algorithm.

This research was conducted while S.D. Johnson was a graduate student at the University of California, Davis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\varGamma \) is sometimes referred to as a listening structure [7] or interaction matrix [10].

  2. 2.

    We use \(\varGamma ^T\) to denote the matrix \(\varGamma \) raised to the Tth power. For matrix transposition, we use the notation \(\varGamma ^\intercal \).

  3. 3.

    A set function \(f : \varOmega \rightarrow \mathbb {R}\) is submodular if, for every \(X \subseteq Y \subset \varOmega \) and element \(x \in \varOmega \setminus Y\), we have \(f(X \cup \{x\}) - f(X) \ge f(Y \cup \{x\}) - f(Y)\).

References

  1. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: A note on competitive diffusion through social networks. Inf. Process. Lett. 110(6), 221–225 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O.: The diffusion of microfinance. Science 341(6144), 363–371 (2013)

    Article  Google Scholar 

  3. Banerjee, A.V., Chandrasekhar, A., Duflo, E., Jackson, M.O.: Gossip: Identifying central individuals in a social network. Working Paper, August 2014

    Google Scholar 

  4. Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 306–311. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77105-0_31

    Chapter  Google Scholar 

  5. Borodin, A., Filmus, Y., Oren, J.: Threshold models for competitive influence in social networks. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 539–550. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17572-5_48

    Chapter  Google Scholar 

  6. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)

    Article  MATH  Google Scholar 

  7. DeMarzo, P.M., Vayanos, D., Zweibel, J.: Persuasion bias, social influence, and unidimensional opinions. Q. J. Econ. 118(3), 909–968 (2003)

    Article  MATH  Google Scholar 

  8. Fotakis, D., Lykouris, T., Markakis, E., Obraztsova, S.: Influence maximization in switching-selection threshold models. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 122–133. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44803-8_11

    Google Scholar 

  9. Golub, B., Jackson, M.O.: How homophily affects the speed of contagion, best response and learning dynamics. Working Paper, September 2010

    Google Scholar 

  10. Golub, B., Jackson, M.O.: Naïve learning in social networks and the wisdom of crowds. Am. Econ. J. Microeconomics 2(1), 112–149 (2010)

    Article  Google Scholar 

  11. Goyal, S., Heidari, H., Kearns, M.: Competitive contagion in networks. Games and Economic Behavior (2014) (in press)

    Google Scholar 

  12. Jackson, M.O.: Social and Economic Networks. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  13. Jackson, M.O.: An overview of social networks and economic applications. In: Benhabib, J., Bisin, A., Jackson, M.O. (eds.) Handbook of Social Economics, chap. 12, pp. 511–585. North Holland, San Diego (2011)

    Google Scholar 

  14. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146. ACM, New York (2003)

    Google Scholar 

  15. Mossel, E., Roch, S.: Submodularity of influence in social networks: from local to global. SIAM J. Comput. 39(6), 2176–2188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions—i. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tzoumas, V., Amanatidis, C., Markakis, E.: A game-theoretic analysis of a competitive diffusion process over social networks. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 1–14. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35311-6_1

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the US Army Research Office MURI Award No. W911NF-13-1-0340 and Cooperative Agreement No. W911NF-09-2-0053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel D. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Johnson, S.D., George, J., D’Souza, R.M. (2017). Strategic Seeding of Rival Opinions. In: Cheng, J., Hossain, E., Zhang, H., Saad, W., Chatterjee, M. (eds) Game Theory for Networks. GameNets 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 174. Springer, Cham. https://doi.org/10.1007/978-3-319-47509-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47509-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47508-0

  • Online ISBN: 978-3-319-47509-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics