Skip to main content

Transfer Learning Based on A+ for Image Super-Resolution

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9983))

Abstract

Example learning-based super-resolution (SR) methods are effective to generate a high-resolution (HR) image from a single low-resolution (LR) input. And these SR methods have shown a great potential for many practical applications. Unfortunately, most of popular example learning-based approaches extract features from limited training images. These training images are insufficient for super resolution task. Our work is to transfer some supplemental information from other domains. Therefore, in this paper, a new algorithm Transfer Learning based on A+ (TLA) is proposed for image super-resolution task. First, we transfer supplemental information from other datasets to construct a new dictionary. Then, in sample selection, more training samples are supplemented to the basic training samples. In experiments, we seek to explore what types of images can provide more appropriate information for super-resolution task. Experimental results indicate that our approach is superior to A+ when transferring images containing similar content with original data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deng, C., Xu, J., Zhang, K., Tao, D., Gao, X., Li, X.: Similarity constraints-based structured output regression machine: an approach to image super-resolution. IEEE Trans. Neural Netw. Learn. Syst. (2015). doi:10.1109/TNNLS.2015.2468069

    Google Scholar 

  2. Yu, J., Gao, X., Tao, D., Li, X., Zhang, K.: A unified learning framework for single image super-resolution. IEEE Trans. Neural Netw. Learn. Syst. 25(4), 780–792 (2014)

    Article  Google Scholar 

  3. Zhu, Y., Li, K., Jiang, J.: Video super-resolution based on automatic key-frame selection and feature-guided variational optical flow. Sig. Process. Image Commun. 29(8), 875–886 (2014)

    Article  Google Scholar 

  4. Zhang, K., Zhou, X., Zhang, H., Zuo, W.: Revisiting single image super-resolution under internet environment: blur kernels and reconstruction algorithms. In: Ho, Y.-S., Sang, J., Ro, Y.M., Kim, J., Wu, F. (eds.) PCM 2015. LNCS, vol. 9314, pp. 677–687. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24075-6_65

    Chapter  Google Scholar 

  5. Li, K., Zhu, Y., Yang, J., Jiang, J.: Video super-resolution using an adaptive super-pixel guided auto-regressive model. Pattern Recogn. 51, 59–71 (2016)

    Article  Google Scholar 

  6. Li, J., Qiu, M.K., Ming, Z., Quan, G., Qin, X., Gu, Z.: Online optimization for scheduling preemptable tasks on IaaS cloud systems. J. Parallel Distrib. Comput. 72(5), 666–677 (2012)

    Article  Google Scholar 

  7. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16817-3_8

    Google Scholar 

  8. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: CVPR, pp. 1–8. IEEE (2008)

    Google Scholar 

  9. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2011. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  10. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  11. Zhang, D., Si, L.: Multiple instance transfer learning. In: IEEE International Conference on Data Mining Workshops, pp. 406–411. IEEE (2009)

    Google Scholar 

  12. Dai, D., Kroeger, T., Timofte, R., Van Gool, L.: Metric imitation by manifold transfer for efficient vision applications. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3527–3536 (2015)

    Google Scholar 

  13. Dong, C., Deng, Y., Change Loy, C., Tang, X.: Compression artifacts reduction by a deep convolutional network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 576–584 (2015)

    Google Scholar 

  14. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  15. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: IEEE International Conference on Computer Vision, pp. 416–423. IEEE (2001)

    Google Scholar 

  16. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  17. Zhang, Y., Zhang, Y., Zhang, J., Wang, H., Dai, Q.: Single image super-resolution via iterative collaborative representation. In: Ho, Y.-S., Sang, J., Ro, Y.M., Kim, J., Wu, F. (eds.) PCM 2015. LNCS, vol. 9315, pp. 63–73. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24078-7_7

    Chapter  Google Scholar 

  18. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  19. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: CVPR, pp. 3606–3613 (2014)

    Google Scholar 

  20. Zhong, S., Liu, Y., Chen, Q.: Visual orientation inhomogeneity based scale invariant feature transform. Expert Syst. Appl. 42(13), 5658–5667 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61502311), the Natural Science Foundation of Guangdong Province (No. 2016A030310053), the Science and Technology Innovation Commission of Shenzhen under Grant (No. JCYJ20150324141711640), the Strategic Emerging Industry Development Foundation of Shenzhen (No. JCY20130326105637578), the Shenzhen University research funding (201535), Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase), and the Tencent Rhinoceros Birds Scientific Research Foundation (2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-hua Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Su, M., Zhong, Sh., Jiang, Jm. (2016). Transfer Learning Based on A+ for Image Super-Resolution. In: Lehner, F., Fteimi, N. (eds) Knowledge Science, Engineering and Management. KSEM 2016. Lecture Notes in Computer Science(), vol 9983. Springer, Cham. https://doi.org/10.1007/978-3-319-47650-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47650-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47649-0

  • Online ISBN: 978-3-319-47650-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics