Skip to main content

A Subset Space Perspective on Agents Cooperating for Knowledge

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9983))

Abstract

In this paper, we propose an additional application area of the subset space semantics of modal logic in terms of cooperating agents. While the original conception reflects both the knowledge acquisition process and the accompanying topological effect for a single agent, we show how a slight extension of that system can be utilized for modeling agents which, in a strict sense, cooperate for knowledge. In so doing, the agents will come in by means of so-called effort functions. These functions shall represent those of the agents’ actions which are targeted at more knowledge of the whole group. Our investigations result in a particular multi-agent version of the well-known logic of subset spaces, which allows us to reason about qualitative aspects of cooperation like the dominance of a joint commitment over any individual effort. On the technical side, a soundness and completeness theorem for one of the logics arising from that will be proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is in accordance with the general setting in the context of subset spaces.

  2. 2.

    The part this operator plays in the novel system will become apparent later.

  3. 3.

    If the effort functions shall depend on knowledge states alone, then topological nexttime logic, see [9], would enter the field. This would lead to a somewhat more complicated but related system.

  4. 4.

    In other words, the schema \((p \rightarrow \mathsf {C}_i p)\wedge (\mathsf {C}_i p\rightarrow p)\) is \(\mathsf {CALSS}_n\)-derivable.

  5. 5.

    This point of view is derived by analogy with sequencing from the theory of parallel programming.

  6. 6.

    One or another proof of such a kind can be found in the literature; see, as regards a fully completed version for \(\mathsf {LSS}\), [4]. Note that the special circumstances of each individual case require an appropriate adjustment, which is most often non-trivial.

References

  1. Aiello, M., Pratt-Hartmann, I.E., van Benthem, J.F.A.K.: Handbook of Spatial Logics. Springer, Dordrecht (2007)

    Book  MATH  Google Scholar 

  2. Balbiani, P., Ditmarsch, H., Kudinov, A.: Subset space logic with arbitrary announcements. In: Lodaya, K. (ed.) ICLA 2013. LNCS, vol. 7750, pp. 233–244. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36039-8_21

    Chapter  Google Scholar 

  3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  4. Dabrowski, A., Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. Ann. Pure Appl. Logic 78, 73–110 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ditmarsch, H., Knight, S., Özgün, A.: Arbitrary announcements on topological subset spaces. In: Bulling, N. (ed.) EUMAS 2014. LNCS (LNAI), vol. 8953, pp. 252–266. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17130-2_17

    Google Scholar 

  6. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  7. Georgatos, K.: Knowledge theoretic properties of topological spaces. In: Masuch, M., Pólos, L. (eds.) Logic at Work 1992. LNCS, vol. 808, pp. 147–159. Springer, Heidelberg (1994). doi:10.1007/3-540-58095-6_11

    Chapter  Google Scholar 

  8. Goldblatt, R.: Logics of Time and Computation. CSLI Lecture Notes, 2nd edn., vol. 7. Center for the Study of Language and Information, Stanford (1992)

    Google Scholar 

  9. Heinemann, B.: Topological nexttime logic. In: Kracht, M., de Rijke, M., Wansing, H., Zakharyaschev, M. (eds.) Advances in Modal Logic 1, vol. 87, pp. 99–113. CSLI Publications, Kluwer, Stanford, CA (1998)

    Google Scholar 

  10. Heinemann, B.: A PDL-like logic of knowledge acquisition. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 146–157. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74510-5_17

    Chapter  Google Scholar 

  11. Heinemann, B.: Topology and knowledge of multiple agents. In: Geffner, H., Prada, R., Machado Alexandre, I., David, N. (eds.) IBERAMIA 2008. LNCS (LNAI), vol. 5290, pp. 1–10. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88309-8_1

    Chapter  Google Scholar 

  12. Heinemann, B.: Subset spaces modeling knowledge-competitive agents. In: Zhang, S., Wirsing, M., Zhang, Z. (eds.) KSEM 2015. LNCS (LNAI), vol. 9403, pp. 3–14. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25159-2_1

    Chapter  Google Scholar 

  13. Heinemann, B.: Augmenting subset spaces to cope with multi-agent knowledge. In: Artemov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 130–145. Springer, Heidelberg (2016). doi:10.1007/978-3-319-27683-0_10

    Chapter  Google Scholar 

  14. Heinemann, B.: Topological facets of the logic of subset spaces (with emphasis on canonical models). J. Logic Comput. (2016). 22 pp. doi:10.1093/logcom/exv087

  15. Krommes, G.: A new proof of decidability for the modal logic of subset spaces. In: Ten Cate, B. (ed.) Proceedings of the Eighth ESSLLI Student Session, Vienna, Austria, pp. 137–147, August 2003

    Google Scholar 

  16. Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science, Cambridge Tracts in Theoretical Computer Science, vol. 41. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  17. Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. In: Moses, Y. (ed.) Theoretical Aspects of Reasoning about Knowledge (TARK 1992), pp. 95–105. Morgan Kaufmann, Los Altos (1992)

    Google Scholar 

  18. Wáng, Y.N., Ågotnes, T.: Multi-agent subset space logic. In: Proceedings 23rd IJCAI, pp. 1155–1161. AAAI (2013)

    Google Scholar 

  19. Wáng, Y.N., Ågotnes, T.: Subset space public announcement logic. In: Lodaya, K. (ed.) ICLA 2013. LNCS, vol. 7750, pp. 245–257. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36039-8_22

    Chapter  Google Scholar 

  20. Weiss, M.A., Parikh, R.: Completeness of certain bimodal logics for subset spaces. Stud. Logica 71, 1–30 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Heinemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Heinemann, B. (2016). A Subset Space Perspective on Agents Cooperating for Knowledge. In: Lehner, F., Fteimi, N. (eds) Knowledge Science, Engineering and Management. KSEM 2016. Lecture Notes in Computer Science(), vol 9983. Springer, Cham. https://doi.org/10.1007/978-3-319-47650-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47650-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47649-0

  • Online ISBN: 978-3-319-47650-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics