Skip to main content

Using Temporal Association Rules for the Synthesis of Embodied Conversational Agents with a Specific Stance

  • Conference paper
  • First Online:
Intelligent Virtual Agents (IVA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10011))

Included in the following conference series:

Abstract

In the field of Embodied Conversational Agent (ECA) one of the main challenges is to generate socially believable agents. The long run objective of the present study is to infer rules for the multimodal generation of agents’ socio-emotional behaviour. In this paper, we introduce the Social Multimodal Association Rules with Timing (SMART) algorithm. It proposes to learn the rules from the analysis of a multimodal corpus composed by audio-video recordings of human-human interactions. The proposed methodology consists in applying a Sequence Mining algorithm using automatically extracted Social Signals such as prosody, head movements and facial muscles activation as an input. This allows us to infer Temporal Association Rules for the behaviour generation. We show that this method can automatically compute Temporal Association Rules coherent with prior results found in the literature especially in the psychology and sociology fields. The results of a perceptive evaluation confirms the ability of a Temporal Association Rules based agent to express a specific stance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Truong, K., Heylen, D., Chetouani, M., Mutlu, B., Salah, A.A.: Workshop on emotion representations and modelling for companion systems. In: ERM4CT@ICMI (2015)

    Google Scholar 

  2. Vinciarelli, A., Pantic, M., Bourlard, H.: Social signal processing: survey of an emerging domain. Image Vision Comput. 27, 1743–1759 (2009)

    Article  Google Scholar 

  3. Vinciarelli, A., Pantic, M., Heylen, D., Pelachaud, C., Poggi, I., D’Errico, F., Schröder, M.: Bridging the gap between social animal, unsocial machine: a survey of social signal processing. Affect. Comput. 3, 69–87 (2012)

    Article  Google Scholar 

  4. Rudovic, O., Nicolaou, M.A., Pavlovic, V.: Machine Learning Methods for Social Signal Processing (2014)

    Google Scholar 

  5. Pentland, A.: Social dynamics: signals and behavior. In: ICDL (2004)

    Google Scholar 

  6. Sandbach, G., Zafeiriou, S., Pantic, M.: Markov random field structures for facial action unit intensity estimation. In: ICCVW (2013)

    Google Scholar 

  7. Savran, A., Cao, H., Nenkova, A., Verma, R.: Temporal Bayesian fusion for affect sensing: combining video, audio, and lexical modalities (2014)

    Google Scholar 

  8. Scherer, K.R.: What are emotions? And how can they be measured? Soc. Sci. Inf. 44, 693–727 (2005)

    Article  Google Scholar 

  9. Keltner, D.: Signs of appeasement: evidence for the distinct displays of embarrassment, amusement, and shame. J. Pers. Soc. Psychol. 68, 441–454 (1995)

    Article  Google Scholar 

  10. Bevacqua, E., Pelachaud, C.: Expressive audio-visual speech. Comput. Anim. Virtual Worlds 15, 297–304 (2004)

    Article  Google Scholar 

  11. Fu, Q., op den Akker, R., Bruijnes, M.: A literature review of typical behavior of different interpersonal attitude. Capita Selecta HMI, University of Twente (2014)

    Google Scholar 

  12. Allwood, J., Cerrato, L.: A study of gestural feedback expressions. In: First Nordic Symposium on Multimodal Communication (2003)

    Google Scholar 

  13. Cafaro, A., Vilhjálmsson, H.H., Bickmore, T., Heylen, D., Jóhannsdóttir, K.R., Valgardsson, G.S.: First impressions: users judgments of virtual agents personality and interpersonal attitude in first encounters. In: IVA (2012)

    Google Scholar 

  14. Cowie, R., Gunes, H., McKeown, G., Armstrong, J., Douglas-Cowie, E.: The emotional and communicative significance of head nods and shakes in a naturalistic database (2010)

    Google Scholar 

  15. Lee, J., Marsella, S.: Modeling speaker behavior: a comparison of two approaches. In: IVA (2012)

    Google Scholar 

  16. Ravenet, B., Ochs, M., Pelachaud, C.: From a user-created corpus of virtual agent’s non-verbal behavior to a computational model of interpersonal attitudes. In: IVA (2013)

    Google Scholar 

  17. Martínez, H.P., Yannakakis, G.N.: Mining multimodal sequential patterns: a case study on affect detection. In: ICMI (2011)

    Google Scholar 

  18. Chollet, M., Ochs, M., Pelachaud, C.: From non-verbal signals sequence mining to bayesian networks for interpersonal attitudes expression. In: Bickmore, T., Marsella, S., Sidner, C. (eds.) IVA 2014. LNCS, vol. 8637, pp. 120–133. Springer, Heidelberg (2014). doi:10.1007/978-3-319-09767-1_15

    Google Scholar 

  19. Xiong, X., De la Torre, F.: Supervised descent method and its applications to face alignment. In: CVPR (2013)

    Google Scholar 

  20. Mertens, P.: The prosogram: semi-automatic transcription of prosody based on a tonal perception model. In: International Conference on Speech Prosody, 2004 (2004)

    Google Scholar 

  21. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov. (2007)

    Google Scholar 

  22. Nicolle, J., Rapp, V., Bailly, K., Prevost, L., Chetouani, M.: Robust continuous prediction of human emotions using multiscale dynamic cues. In: ICMI (2012)

    Google Scholar 

  23. Guillame-Bert, M., Crowley, J.L.: Learning temporal association rules on symbolic time sequences. In: ACML (2012)

    Google Scholar 

  24. McKeown, G., Valstar, M., Cowie, R., Pantic, M., Schröder, M.: The semaine database: annotated multimodal records of emotionally colored conversations between a person and a limited agent. Affect. Comput. 3, 5–17 (2012)

    Article  Google Scholar 

  25. Argyle, M.: Bodily Communication. Routledge, London (2013)

    Google Scholar 

  26. Ochs, M., Pelachaud, C.: Model of the perception of smiling virtual character. In: AAMAS (2012)

    Google Scholar 

  27. Guaïtella, I., Santi, S., Lagrue, B., Cavé, C.: Are eyebrow movements linked to voice variations and turn-taking in dialogue? An experimental investigation. Lang. Speech 52, 207–222 (2009)

    Article  Google Scholar 

  28. Roon, K.D., Tiede, M.K., Dawson, K.M., Whalen, D.H.: Coordination of eyebrow movement with speech acoustics and head movement. In: ICPhS (2015)

    Google Scholar 

  29. Pecune, F., Cafaro, A., Chollet, M., Philippe, P., Pelachaud, C.: Suggestions for extending SAIBA with the VIB platform. In: Proceedings of the Workshop on Architectures and Standards for IVA (2014)

    Google Scholar 

  30. Motulsky, H.: Intuitive Biostatistics: A Nonmathematical Guide to Statistical Thinking. Oxford University Press, New York (2013)

    Google Scholar 

Download references

Acknowledgement

This work was performed within the Labex SMART supported by French state funds managed by the ANR within the Investissements dÁvenir programme under reference ANR-11-IDEX-0004-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Janssoone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Janssoone, T., Clavel, C., Bailly, K., Richard, G. (2016). Using Temporal Association Rules for the Synthesis of Embodied Conversational Agents with a Specific Stance. In: Traum, D., Swartout, W., Khooshabeh, P., Kopp, S., Scherer, S., Leuski, A. (eds) Intelligent Virtual Agents. IVA 2016. Lecture Notes in Computer Science(), vol 10011. Springer, Cham. https://doi.org/10.1007/978-3-319-47665-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47665-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47664-3

  • Online ISBN: 978-3-319-47665-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics