Skip to main content

Fast-Forwarding Crowd Simulations

  • Conference paper
  • First Online:
Intelligent Virtual Agents (IVA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10011))

Included in the following conference series:

Abstract

The processing time to simulate crowds for games or simulations is a real challenge. While the increasing power of processing capacity is a reality in the hardware industry, it also means that more agents, better rendering and most sophisticated Artificial Intelligence (AI) methods can be used, so again the computational time is an issue. Despite the processing cost, in many cases the most interesting period of time in a game or simulation is far from the beginning or in a specific known period, but it is still necessary to simulate the whole time (spending time and processing capacity) to achieve the desired period of time. It would be useful to fast forward the time in order to see a specific period of time where simulation result could be more meaningful for analysis. This paper presents a method to provide time travel in Crowd Simulation. Based on crowd features, we compute the expected variation in velocities and apply that for time travel in crowd simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This scenario could not be simulated with 320 agents because the agents were stuck due to lack of free space.

References

  1. Adams, E.: Fundamentals of Game Design. New Riders Press, Berkeley (2014)

    Google Scholar 

  2. Beauregard, S., Haas, H.: Pedestrian dead reckoning: a basis for personal positioning. In: Proceedings of the 3rd Workshop on Positioning, Navigation and Communication (WPNC06), p. 1 (2006)

    Google Scholar 

  3. Bicho, A.L., Rodrigues, R.A., Musse, S.R., Jung, C.R., Paravisi, M., Magalhes, L.P.: Simulating crowds based on a space colonization algorithm. Comput. Graph. 36(2), 70–79 (2012). http://www.sciencedirect.com/science/article/pii/S0097849311001713. Virtual Reality in Brazil 2011

    Google Scholar 

  4. Bianco, C.M.D., Jovani Oliveira Brasil, A.B., Musse, S.R.: A model to compute people disturbance in crowds. In: Poster at ACM Motion in Games, vol. 1 (2015)

    Google Scholar 

  5. Everett, A.: Time travel paradoxes, path integrals, and the many worlds interpretation of quantum mechanics. Phys. Rev. D69, 124023. http://link.aps.org/doi/10.1103/PhysRevD.69.124023

  6. Guy, S.J., Chhugani, J., Kim, C., Satish, N., Lin, M.C., Manocha, D., Dubey, P.: Clearpath: highly parallel collision avoidance for multi-agent simulation. In: ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation, pp. 177–187. ACM (2009)

    Google Scholar 

  7. Hagelback, J., Johansson, S.: Dealing with fog of war in a real time strategy game environment. In: IEEE Symposium On Computational Intelligence and Games, CIG 2008, pp. 55–62, December 2008

    Google Scholar 

  8. Hakiri, A., Berthou, P., Gayraud, T.: QoS-enabled anfis dead reckoning algorithm for distributed interactive simulation. In: Turner, S.J., Roberts, D.J. (eds.) DS-RT, pp. 33–42. IEEE Computer Society (2010). http://dblp.uni-trier.de/db/conf/dsrt/dsrt2010.html#HakiriBG10

  9. Ladetto, Q., Merminod, B.: Digital magnetic compass and gyroscope integration for pedestrian navigation. In: 9th International Conference on Integrated Navigation Systems, St-Petersburg, pp. 27–29 (2002)

    Google Scholar 

  10. Osborne, D., Dickinson, P.: Improving Games AI Performance Using Grouped Hierarchical Level of Detail. Elsevier Science Inc., New York

    Google Scholar 

  11. Pettre, J., de Heras Ciechomski, P., Maim, J., Yersin, B., Laumond, J.P., Thalmann, D.: Real-time navigating crowds: scalable simulation and rendering. Comput. Anim. Virtual Worlds 17(3–4), 445–455 (2006). http://dx.doi.org/10.1002/cav.147

    Google Scholar 

  12. Pettr, J., Ondrej, J., Olivier, A.H., Crtual, A., Donikian, S.: Experiment-based modeling, simulation and validation of interactions between virtual walkers. In: Fellner, D.W., Spencer, S.N. (eds.) Symposium on Computer Animation, pp. 189–198. ACM (2009). http://dblp.uni-trier.de/db/conf/sca/sca2009.html#PettreOOCD09

  13. Randell, C., Djiallis, C., Muller, H.: Personal position measurement using dead reckoning. In: Proceedings of The Seventh International Symposium on Wearable Computers, pp. 166–173. Springer (2003)

    Google Scholar 

  14. Runions, A., Fuhrer, M., Lane, B., Federl, P., Rolland-Lagan, A.G., Prusinkiewicz, P.: Modeling and visualization of leaf venation patterns. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH 2005, NY, USA, pp. 702–711 (2005). http://doi.acm.org/10.1145/1186822.1073251

  15. Capin, T.K., Pandzic, I.S., Thalmann, N.M., Thalmann, D.: A dead-reckoning algorithm for virtual human figures. Proceedings of VRAIS97 1(1), 161–169 (1997)

    Google Scholar 

  16. Zampella, F., Ruiz, A.R.J., Granja, F.S.: Indoor positioning using efficient map matching, RSS measurements, and an improved motion model. IEEE Trans. Veh. Technol. 64(4), 1304–1317 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soraia Raupp Musse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bianco, C.M.D., Braun, A., Musse, S.R., Jung, C., Badler, N. (2016). Fast-Forwarding Crowd Simulations. In: Traum, D., Swartout, W., Khooshabeh, P., Kopp, S., Scherer, S., Leuski, A. (eds) Intelligent Virtual Agents. IVA 2016. Lecture Notes in Computer Science(), vol 10011. Springer, Cham. https://doi.org/10.1007/978-3-319-47665-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47665-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47664-3

  • Online ISBN: 978-3-319-47665-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics