Skip to main content

Chinese Hedge Scope Detection Based on Structure and Semantic Information

  • Conference paper
  • First Online:
Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data (NLP-NABD 2016, CCL 2016)

Abstract

Hedge detection aims to distinguish factual and uncertain information, which is important in information extraction. The task of hedge detection contains two subtasks: identifying hedge cues and detecting their linguistic scopes. Hedge scope detection is dependent on syntactic and semantic information. Previous researches usually use lexical and syntactic information and ignore deep semantic information. This paper proposes a novel syntactic and semantic information exploitation method for scope detection. Composite kernel model is employed to capture lexical and syntactic information. Long short-term memory (LSTM) model is adopted to explore semantic information. Furthermore, we exploit a hybrid system to integrate composite kernel and LSTM model into a unified framework. Experiments on the Chinese Biomedical Hedge Information (CBHI) corpus show that composite kernel model could effectively capture lexical and syntactic information, LSTM model could capture deep semantic information and their combination could further improve the performance of hedge scope detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at http://nlp.stanford.edu/software/lex-parser.shtml.

  2. 2.

    Available at http://nlp.stanford.edu/software/segmenter.shtml.

  3. 3.

    Available at http://disi.unitn.it/moschitti/Tree-Kernel.htm.

  4. 4.

    Available at http://deeplearning.net/software/theano/.

  5. 5.

    Available at https://code.google.com/p/word2vec/.

  6. 6.

    Available at http://www.datatang.com/data/list/s04-r020-t01-c03-la01-p3.

References

  1. Szarvas, G., Vincze, V., Farkas, R., Csirik, J.: The BioScope corpus: annotation for negation, uncertainty and their scope in biomedical texts. In: Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing, pp. 38–45. ACL, USA (2008)

    Google Scholar 

  2. Zhou, H.W., Yang, H., Zhang, J., Kang, S.Y., Huang, D.G.: The research and construction of Chinese hedge corpus. J. Chin. Inf. Process. 29, 83–89 (2015)

    Google Scholar 

  3. Farkas, R., Vincze, V., Móra, G., Csirik, J., Szarvas, G.: The CoNLL-2010 shared task: learning to detect hedges and their scope in natural language text. In: Proceedings of CoNLL, pp. 1–12. ACL, Sweden (2010)

    Google Scholar 

  4. Zou, B.W., Zhou, G.D., Zhu, Q.M.: Negation and Speculation extraction: an overview. J. Chin. Inf. Process. 04, 16–24 (2015)

    Google Scholar 

  5. Wei, Z.Y., Chen, J.W., Gao, W., Li, B.Y., Zhou, L.J., He, Y.L., Wong, K.F.: An empirical study on uncertainty identification in social media context. In: Proceedings of ACL, pp. 58–62. ACL, Bulgaria (2013)

    Google Scholar 

  6. Su, Q., Lou, H.Q., Liu, P.Y.: Hedge detection with latent features. In: Liu, P., Su, Q. (eds.) Chinese Lexical Semantics. LNCS, vol. 8229, pp. 436–441. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Moschitti, A.: A study on convolution kernels for shallow semantic parsing. In: Proceedings of ACL, p. 335. ACL, Spain (2004)

    Google Scholar 

  8. Özgür, A., Radev, D.R.: Detecting speculations and their scopes in scientific text. In: Proceedings of EMNLP, pp. 1398–1407. ACL, Singapore (2009)

    Google Scholar 

  9. Øvrelid, L., Velldal, E., Oepen, S.: Syntactic scope resolution in uncertainty analysis. In: Proceedings of CL, pp. 1379–1387. ACL, Beijing (2010)

    Google Scholar 

  10. Morante, R., Daelemans, W.: Learning the scope of hedge cues in biomedical texts. In: Proceedings of BioNLP, pp. 28–36. ACL, Colorado (2009)

    Google Scholar 

  11. Morante, R., Asch, V.V., Daelemans, W.: Memory-based resolution of in-sentence scopes of hedge cues. In: Proceedings of CoNLL, pp. 40–47. ACL, Sweden (2010)

    Google Scholar 

  12. Li, X.X., Shen, J.P., Gao, X., Wang, X.: Exploiting rich features for detecting hedges and their scope. In: Proceedings of CoNLL, pp. 78–83. ACL, Sweden (2010)

    Google Scholar 

  13. Zhu, Q.M., Li, J.H., Wang, H.L., Zhou, G.D.: A unified framework for scope learning via simplified shallow semantic parsing. In: Proceedings of EMNLP, pp. 714–724. ACL, USA (2010)

    Google Scholar 

  14. Zou, B.W., Zhu, Q.M., Zhou, G.D.: Negation and speculation identification in Chinese language. In: Proceedings of ACL-IJCNLP, pp. 656–665. ACL, Beijing (2015)

    Google Scholar 

  15. Zhang, M., Zhang, J., Su, J.: Exploring syntactic features for relation extraction using a convolution tree kernel. In: Proceedings of ACL, pp. 288–295. ACL, New York (2006)

    Google Scholar 

  16. Zhou, H.W., Huang, D.G., Li, X.Y., Yang, Y.S.: Combining structured and flat features by a composite kernel to detect hedges scope in biological texts. Chin. J. Electron. 20(3), 476–482 (2011)

    Google Scholar 

  17. Zou, B.W., Zhou, G.D., Zhu, Q.M.: Tree Kernel-based negation and speculation scope detection with structured syntactic parse features. In: Proceedings of EMNLP, pp. 968–976. ACL, USA (2013)

    Google Scholar 

  18. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of ACL-IJCNLP, pp. 1556–1566. ACL, Beijing (2015)

    Google Scholar 

  19. Xu, Y., Mou, L.L., Li, G., Chen, Y.C., Peng, H., Jin, Z.: Classifying relations via long short term memory networks along shortest dependency paths. arXiv preprint arXiv:1508.03720 (2015)

  20. Zhou, H.W., Deng, H.J., Chen, L., Yang, Y.L., Jia, C.: Exploiting syntactic and semantics information for chemical–disease relation extraction. Database, baw048 (2016)

    Google Scholar 

  21. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Bengio, Y.: Theano: a CPU and GPU math expression compiler. In: Proceedings of SciPy, pp. 1–7. SciPy, Austin (2010)

    Google Scholar 

Download references

Acknowledgements

This research is supported by Natural Science Foundation of China (No. 61272375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiwei Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Zhou, H., Xu, J., Yang, Y., Deng, H., Chen, L., Huang, D. (2016). Chinese Hedge Scope Detection Based on Structure and Semantic Information. In: Sun, M., Huang, X., Lin, H., Liu, Z., Liu, Y. (eds) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. NLP-NABD CCL 2016 2016. Lecture Notes in Computer Science(), vol 10035. Springer, Cham. https://doi.org/10.1007/978-3-319-47674-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47674-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47673-5

  • Online ISBN: 978-3-319-47674-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics