Abstract
Hedge detection aims to distinguish factual and uncertain information, which is important in information extraction. The task of hedge detection contains two subtasks: identifying hedge cues and detecting their linguistic scopes. Hedge scope detection is dependent on syntactic and semantic information. Previous researches usually use lexical and syntactic information and ignore deep semantic information. This paper proposes a novel syntactic and semantic information exploitation method for scope detection. Composite kernel model is employed to capture lexical and syntactic information. Long short-term memory (LSTM) model is adopted to explore semantic information. Furthermore, we exploit a hybrid system to integrate composite kernel and LSTM model into a unified framework. Experiments on the Chinese Biomedical Hedge Information (CBHI) corpus show that composite kernel model could effectively capture lexical and syntactic information, LSTM model could capture deep semantic information and their combination could further improve the performance of hedge scope detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Available at http://nlp.stanford.edu/software/lex-parser.shtml.
- 2.
Available at http://nlp.stanford.edu/software/segmenter.shtml.
- 3.
Available at http://disi.unitn.it/moschitti/Tree-Kernel.htm.
- 4.
Available at http://deeplearning.net/software/theano/.
- 5.
Available at https://code.google.com/p/word2vec/.
- 6.
References
Szarvas, G., Vincze, V., Farkas, R., Csirik, J.: The BioScope corpus: annotation for negation, uncertainty and their scope in biomedical texts. In: Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing, pp. 38–45. ACL, USA (2008)
Zhou, H.W., Yang, H., Zhang, J., Kang, S.Y., Huang, D.G.: The research and construction of Chinese hedge corpus. J. Chin. Inf. Process. 29, 83–89 (2015)
Farkas, R., Vincze, V., Móra, G., Csirik, J., Szarvas, G.: The CoNLL-2010 shared task: learning to detect hedges and their scope in natural language text. In: Proceedings of CoNLL, pp. 1–12. ACL, Sweden (2010)
Zou, B.W., Zhou, G.D., Zhu, Q.M.: Negation and Speculation extraction: an overview. J. Chin. Inf. Process. 04, 16–24 (2015)
Wei, Z.Y., Chen, J.W., Gao, W., Li, B.Y., Zhou, L.J., He, Y.L., Wong, K.F.: An empirical study on uncertainty identification in social media context. In: Proceedings of ACL, pp. 58–62. ACL, Bulgaria (2013)
Su, Q., Lou, H.Q., Liu, P.Y.: Hedge detection with latent features. In: Liu, P., Su, Q. (eds.) Chinese Lexical Semantics. LNCS, vol. 8229, pp. 436–441. Springer, Heidelberg (2013)
Moschitti, A.: A study on convolution kernels for shallow semantic parsing. In: Proceedings of ACL, p. 335. ACL, Spain (2004)
Özgür, A., Radev, D.R.: Detecting speculations and their scopes in scientific text. In: Proceedings of EMNLP, pp. 1398–1407. ACL, Singapore (2009)
Øvrelid, L., Velldal, E., Oepen, S.: Syntactic scope resolution in uncertainty analysis. In: Proceedings of CL, pp. 1379–1387. ACL, Beijing (2010)
Morante, R., Daelemans, W.: Learning the scope of hedge cues in biomedical texts. In: Proceedings of BioNLP, pp. 28–36. ACL, Colorado (2009)
Morante, R., Asch, V.V., Daelemans, W.: Memory-based resolution of in-sentence scopes of hedge cues. In: Proceedings of CoNLL, pp. 40–47. ACL, Sweden (2010)
Li, X.X., Shen, J.P., Gao, X., Wang, X.: Exploiting rich features for detecting hedges and their scope. In: Proceedings of CoNLL, pp. 78–83. ACL, Sweden (2010)
Zhu, Q.M., Li, J.H., Wang, H.L., Zhou, G.D.: A unified framework for scope learning via simplified shallow semantic parsing. In: Proceedings of EMNLP, pp. 714–724. ACL, USA (2010)
Zou, B.W., Zhu, Q.M., Zhou, G.D.: Negation and speculation identification in Chinese language. In: Proceedings of ACL-IJCNLP, pp. 656–665. ACL, Beijing (2015)
Zhang, M., Zhang, J., Su, J.: Exploring syntactic features for relation extraction using a convolution tree kernel. In: Proceedings of ACL, pp. 288–295. ACL, New York (2006)
Zhou, H.W., Huang, D.G., Li, X.Y., Yang, Y.S.: Combining structured and flat features by a composite kernel to detect hedges scope in biological texts. Chin. J. Electron. 20(3), 476–482 (2011)
Zou, B.W., Zhou, G.D., Zhu, Q.M.: Tree Kernel-based negation and speculation scope detection with structured syntactic parse features. In: Proceedings of EMNLP, pp. 968–976. ACL, USA (2013)
Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of ACL-IJCNLP, pp. 1556–1566. ACL, Beijing (2015)
Xu, Y., Mou, L.L., Li, G., Chen, Y.C., Peng, H., Jin, Z.: Classifying relations via long short term memory networks along shortest dependency paths. arXiv preprint arXiv:1508.03720 (2015)
Zhou, H.W., Deng, H.J., Chen, L., Yang, Y.L., Jia, C.: Exploiting syntactic and semantics information for chemical–disease relation extraction. Database, baw048 (2016)
Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Bengio, Y.: Theano: a CPU and GPU math expression compiler. In: Proceedings of SciPy, pp. 1–7. SciPy, Austin (2010)
Acknowledgements
This research is supported by Natural Science Foundation of China (No. 61272375).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Zhou, H., Xu, J., Yang, Y., Deng, H., Chen, L., Huang, D. (2016). Chinese Hedge Scope Detection Based on Structure and Semantic Information. In: Sun, M., Huang, X., Lin, H., Liu, Z., Liu, Y. (eds) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. NLP-NABD CCL 2016 2016. Lecture Notes in Computer Science(), vol 10035. Springer, Cham. https://doi.org/10.1007/978-3-319-47674-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-47674-2_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47673-5
Online ISBN: 978-3-319-47674-2
eBook Packages: Computer ScienceComputer Science (R0)