Skip to main content

Using Social Media to Measure Student Wellbeing: A Large-Scale Study of Emotional Response in Academic Discourse

  • Conference paper
  • First Online:
Social Informatics (SocInfo 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10046))

Included in the following conference series:

  • 3734 Accesses

Abstract

Student resilience and emotional wellbeing are essential for both academic and social development. Earlier studies on tracking students’ happiness in academia showed that many of them struggle with mental health issues. For example, a 2015 study at the University of California Berkeley found that 47 % of graduate students suffer from depression, following a 2005 study that showed 10 % had considered suicide. This is the first large-scale study that uses signals from social media to evaluate students’ emotional wellbeing in academia. This work presents fine-grained emotion and opinion analysis of 79,329 tweets produced by students from 44 universities. The goal of this study is to qualitatively evaluate and compare emotions and sentiments emanating from students’ communications across different academic discourse types and across universities in the U.S. We first build novel predictive models to categorize academic discourse types generated by students into personal, social, and general categories. We then apply emotion and sentiment classification models to annotate each tweet with six Ekman’s emotions – joy, fear, sadness, disgust, anger, and surprise and three opinion types – positive, negative, and neutral. We found that emotions and opinions expressed by students vary across discourse types and universities, and correlate with survey-based data on student satisfaction, happiness and stress. Moreover, our results provide novel insights on how students use social media to share academic information, emotions, and opinions that would pertain to students academic performance and emotional well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    EmoTag Project: http://nil.fdi.ucm.es/index.php?q=node/186.

  2. 2.

    http://web.stanford.edu/~jiweil/ACL_profile_data.zip.

  3. 3.

    Google+ API –https://developers.google.com/+/web/api/rest/.

  4. 4.

    Twitter API – https://dev.twitter.com/rest/public.

  5. 5.

    Freebase – https://www.freebase.com/.

  6. 6.

    http://nlp.stanford.edu/projects/glove/.

  7. 7.

    https://radimrehurek.com/gensim/models/word2vec.html.

  8. 8.

    Pretrained models were released during NAACL Tutorial on Social Media Predictive analytics: http://naacl.org/naacl-hlt-2015/tutorial-social-media.html.

  9. 9.

    http://www.myplan.com/education/colleges/college_rankings_1.php.

  10. 10.

    http://www.forbes.com/top-colleges/list/#tab:rank.

  11. 11.

    http://www.huffingtonpost.com/2013/12/31/happiest-colleges-daily-beast-2013_n_4521921.html.

  12. 12.

    http://www.universityprimetime.com/top-50-colleges-with-the-most-stressed-out-student-bodies/.

  13. 13.

    We found that correlations with Forbes university ranking are not significant.

  14. 14.

    UC Berkeley report: http://ga.berkeley.edu/wellbeingreport/.

References

  1. Benson, V., Morgan, S., Filippaios, F.: Social career management: social media and employability skills gap. Comput. Hum. Behav. 30, 519–525 (2014)

    Article  Google Scholar 

  2. Chang, L., Krosnick, J.A.: National surveys via RDD telephone interviewing versus the internet comparing sample representativeness and response quality. Public Opin. Q. 73(4), 641–678 (2009)

    Article  Google Scholar 

  3. Correa, T., Hinsley, A.W., De Zuniga, H.G.: Who interacts on the web? The intersection of users personality and social media use. Comput. Hum. Behav. 26(2), 247–253 (2010)

    Article  Google Scholar 

  4. Desmet, P.M.: Designing emotion (2002)

    Google Scholar 

  5. Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)

    Article  Google Scholar 

  6. Grosseck, G., Bran, R., Tiru, L.: Dear teacher, what should I write on my wall? A case study on academic uses of Facebook. Procedia Soc. Behav. Sci. 15, 1425–1430 (2011)

    Article  Google Scholar 

  7. Han, K., Volkova, S., Corley, C.D.: Understanding roles of social media in academic engagement and satisfaction for graduate students. In: Proceedings of the ACM CHI Conference on Human Factors in Computing Systems, pp. 1215–1221. ACM (2016)

    Google Scholar 

  8. Jacobsen, W.C., Forste, R.: The wired generation: academic and social outcomes of electronic media use among university students. Cyberpsychol. Behav. Soc. Netw. 14(5), 275–280 (2011)

    Article  Google Scholar 

  9. Junco, R., Heiberger, G., Loken, E.: The effect of Twitter on college student engagement and grades. J. Comput. Assist. Learn. 27(2), 119–132 (2011)

    Article  Google Scholar 

  10. Knight, C.G., Kaye, L.K.: To tweet or not to tweet? A comparison of academics and students usage of Twitter in academic contexts. Innovations Educ. Teach. Int. pp. 1–11 (2014)

    Google Scholar 

  11. Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. Proc. Natl. Acad. Sci. 110, 5802–5805 (2013)

    Article  Google Scholar 

  12. Lampos, V., Aletras, N., Preoţiuc-Pietro, D., Cohn, T.: Predicting and characterizing user impact on Twitter. In: Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics (EACL), pp. 405–413 (2014)

    Google Scholar 

  13. Li, J., Ritter, A., Hovy, E.: Weakly supervised user profile extraction from Twitter. In: Proceedings of ACL (2014)

    Google Scholar 

  14. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  15. Mohammad, S.M., Kiritchenko, S.: Using hashtags to capture fine emotion categories from tweets. Comput. Intell. 31, 301–326 (2014)

    Article  MathSciNet  Google Scholar 

  16. Nakov, P., Rosenthal, S., Kozareva, Z., Stoyanov, V., Ritter, A., Wilson, T.: Semeval-2013 task 2: sentiment analysis in Twitter. In: Proceedings of SemEval, pp. 312–320 (2013)

    Google Scholar 

  17. O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: Proceedings of ICWSM, pp. 122–129 (2010)

    Google Scholar 

  18. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: Proceedings of LREC (2010)

    Google Scholar 

  19. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends IR 2(1–2), 1–135 (2008)

    Google Scholar 

  20. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of EMNLP, pp. 79–86 (2002)

    Google Scholar 

  21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of EMNLP, vol. 14, pp. 1532–1543 (2014)

    Google Scholar 

  23. Perrin, A.: Social media usage: 2005–2015 (2015)

    Google Scholar 

  24. Priem, J., Costello, K.L.: How and why scholars cite on Twitter. Proc. Am. Soc. Inf. Sci. Technol. 47(1), 1–4 (2010)

    Article  Google Scholar 

  25. Qadir, A., Riloff, E.: Bootstrapped learning of emotion hashtags# hashtags4you. In: Proceedings of WASSA (2013)

    Google Scholar 

  26. Roberts, K., Roach, M.A., Johnson, J., Guthrie, J., Harabagiu, S.M.: Empatweet: annotating and detecting emotions on Twitter. In: Proceedings of LREC (2012)

    Google Scholar 

  27. Roblyer, M.D., McDaniel, M., Webb, M., Herman, J., Witty, J.V.: Findings on Facebook in higher education: a comparison of college faculty and student uses and perceptions of social networking sites. Internet High. Educ. 13(3), 134–140 (2010)

    Article  Google Scholar 

  28. Salathé, M., Khandelwal, S.: Assessing vaccination sentiments with online social media: implications for infectious disease dynamics and control. PLoS Comput. Biol. 7(10), e1002199 (2011)

    Article  Google Scholar 

  29. Strapparava, C., Mihalcea, R.: Semeval-2007 task 14: affective text. In: Proceedings of SemEval, pp. 70–74 (2007)

    Google Scholar 

  30. Veletsianos, G.: Higher education scholars’ participation and practices on Twitter. J. Comput. Assist. Learn. 28(4), 336–349 (2012)

    Article  Google Scholar 

  31. Volkova, S., Yoram, B.: On predicting sociodemographic traits and emotions from communications in social networks and their implications to online self-disclosure. Cyberpsychol. Behav. Soc. Netw. 18(12), 726–736 (2015)

    Article  Google Scholar 

  32. Volkova, S., Bachrach, Y., Armstrong, M., Sharma, V.: Inferring latent user properties from texts published in social media (demo). In: Proceedings of AAAI (2015)

    Google Scholar 

  33. Wang, W., Chen, L., Thirunarayan, L., Sheth, A.P.: Harnessing Twitter big data for automatic emotion identification. In: Proceedings of SocialCom, pp. 587–592 (2012)

    Google Scholar 

  34. Zheng, S., Han, K., Rosson, M.B., Carroll, J.: The role of social media in MOOCs: how to use social media to enhance student retention. In: Proceedings of the ACM Conference on Learning@ Scale, pp. 419–428. ACM (2016)

    Google Scholar 

  35. Zhu, X., Kiritchenko, S., Mohammad, S.M.: NRC-Canada-2014: recent improvements in the sentiment analysis of tweets. In: Proceedings of SemEval (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svitlana Volkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Volkova, S., Han, K., Corley, C. (2016). Using Social Media to Measure Student Wellbeing: A Large-Scale Study of Emotional Response in Academic Discourse. In: Spiro, E., Ahn, YY. (eds) Social Informatics. SocInfo 2016. Lecture Notes in Computer Science(), vol 10046. Springer, Cham. https://doi.org/10.1007/978-3-319-47880-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47880-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47879-1

  • Online ISBN: 978-3-319-47880-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics