Abstract
Sentiment analysis aims to determine people’s opinions towards certain entities (e.g., products, movies, people, etc.). In this paper we describe experiments performed to determine sentiment polarity on tweets of the Spanish corpus used in the TASS workshop. We explore the use of two Spanish sentiment lexicons to find out the effect of these resources in the Twitter sentiment analysis task. Rule based and supervised classification methods were implemented and several variations over those approaches were performed. The results show that the information of both lexicons improve the accuracy when is provided as a feature to a Naïve Bayes classifier. Despite the simplicity of the proposed strategy, the supervised approach obtained better results than several participant teams of the TASS workshop and even the rule based approach overpass the accuracy of one team which used a supervised algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
All the words in the SEL lexicon are lemmatized.
- 2.
Experimentally better results were achivied when using all the categories instead of using only the affective process category like in the rule based approach.
References
Taboada, M., Brooke, J., Tofiloski, M., Voll, K.D., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37, 267–307 (2011)
Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Calzolari, N., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) LREC. European Language Resources Association (2010)
Stone, P.J.: The General Inquirer: A Computer Approach to Content Analysis. The MIT Press, Cambridge (1966)
Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29, 24–54 (2010)
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: EMNLP 2002, Philadelphia, Pennsylvania pp. 79–86 (2002)
Urizar, X.S., Roncal, I.S.V.: Detecting sentiments in Spanish tweets. TASS 2012 Working Notes (2012)
Sidorov, G., et al.: Empirical study of machine learning based approach for opinion mining in tweets. In: Batyrshin, I., González Mendoza, M. (eds.) MICAI 2012, Part I. LNCS, vol. 7629, pp. 1–14. Springer, Heidelberg (2013)
Villena-Román, J., García-Morera, J., Cumbreras, M., Martínez-Cámara, E., Martín-Valdivia, M.T., López, L.A.U.: Overview of TASS 2015. In: Villena-Román, J., García-Morera, J., Cumbreras, M.Á.G., Martínez-Cámara, E., Martín-Valdivia, M.T., López, L.A.U. (eds.) TASS@SEPLN, CEUR Workshop Proceedings, vol. 1397, pp. 13–21 (2015)
Garcıa, D., Thelwall, M.: Political alignment and emotional expression in Spanish Tweets. In: Proceedings of the TASS Workshop at SEPLN, pp. 151–159 (2013)
Moreno-Ortiz, A., Pérez Hernández, C.: Lexicon-based sentiment analysis of twitter messages in Spanish. Procesamiento del Lenguaje Natural 50, 93–100 (2013)
Urizar, J., San Vicente Roncal, I.: Elhuyar at TASS 2013. In: Proceedings of the TASS Workshop at SEPLN (2013)
Araque, O., Corcuera, I., Román, C., Iglesias, C.A., Sánchez-Rada, J.F.: Aspect based sentiment analysis of Spanish tweets. In: Villena-Román, J., García-Morera, J., Cumbreras, M.Á.G., Martínez-Cámara, E., Martín-Valdivia, M.T., López, L.A.U. (eds.): TASS@SEPLN, CEUR Workshop Proceedings, vol. 1397, pp. 29–34 (2015). CEUR-WS.org
Valverde, T.J., Tejada, C.J.: Comparing supervised learning methods for classifying Spanish tweets. In: Villena-Román, J., García-Morera, J., Cumbreras, M.Á.G., Martínez-Cámara, E., Martín-Valdivia, M.T., López, L.A.U. (eds.) TASS@SEPLN, CEUR Workshop Proceedings, vol. 1397, pp. 87–92 (2015). CEUR-WS.org
Rangel, I.D., Guerra, S.S., Sidorov, G.: Creación y evaluación de un diccionario marcado con emociones y ponderado para el español. Onomazein 29, 31–46 (2014)
Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic Inquiry and Word Count. Lawerence Erlbaum Associates, Mahwah (2001)
Cámara, E.M., Cumbreras, M., Martín-Valdivia, M.T., López, L.A.U.: SINAI-EMMA: Vectores de Palabras para el Análisis de Opiniones en Twitter. In: Villena-Román, J., García-Morera, J., Cumbreras, M.Á.G., Martínez-Cámara, E., Martín-Valdivia, M.T., López, L.A.U. (eds.) TASS@SEPLN, CEUR Workshop Proceedings, vol. 1397, pp. 41–46 (2015). CEUR-WS.org
del Pilar Salas-Zárate, M., López-López, E., Valencia-García, R., Aussenac-Gilles, N., Almela, Á., Alor-Hernández, G.: A study on LIWC categories for opinion mining in Spanish reviews. J. Inf. Sci. 40, 749–760 (2014)
Vázquez, S., Bel, N.: A classification of adjectives for polarity lexicons enhancement. In: Calzolari, N., Choukri, K., Declerck, T., Dogan, M.U., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S. (eds.) LREC, pp. 3557–3561. European Language Resources Association (ELRA) (2012)
Padró, L., Stanilovsky, E.: FreeLing 3.0: towards wider multilinguality. In: Proceedings of the Language Resources and Evaluation Conference (LREC 2012). ELRA, Istanbul (2012)
Hurtado, L.F., Plà, F., Buscaldi, D.: ELiRF-UPV en TASS 2015: Análisis de Sentimientos en Twitter. In: Villena-Román, J., García-Morera, J., Cumbreras, M.Á.G., Martínez-Cámara, E., Martín-Valdivia, M.T., López, L.A.U. (eds.) TASS@SEPLN, CEUR Workshop Proceedings, vol. 1397, pp. 75–79 (2015). CEUR-WS.org
Álvarez-López, T., Juncal-Martínez, J., Gavilanes, M.F., Costa-Montenegro, E., González-Castaño, F.J., Cerezo-Costas, H., Celix-Salgado, D.: GTI-Gradiant at TASS 2015: a hybrid approach for sentiment analysis in twitter. In: Villena-Román, J., García-Morera, J., Cumbreras, M.Á.G., Martínez-Cámara, E., Martín-Valdivia, M.T., López, L.A.U. (eds.) TASS@SEPLN, CEUR Workshop Proceedings, vol. 1397, pp. 35–40 (2015). CEUR-WS.org
Acknowledgments
We thank the support of Instituto Politécnico Nacional (IPN), ESCOM-IPN, CIC-IPN, SIP-IPN projects number 20160815, 20162058, COFAA-IPN, and EDI-IPN.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Gambino, O.J., Calvo, H. (2016). A Comparison Between Two Spanish Sentiment Lexicons in the Twitter Sentiment Analysis Task. In: Montes y Gómez, M., Escalante, H., Segura, A., Murillo, J. (eds) Advances in Artificial Intelligence - IBERAMIA 2016. IBERAMIA 2016. Lecture Notes in Computer Science(), vol 10022. Springer, Cham. https://doi.org/10.1007/978-3-319-47955-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-47955-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47954-5
Online ISBN: 978-3-319-47955-2
eBook Packages: Computer ScienceComputer Science (R0)