Skip to main content

In Search of Truth: Analysis of Smile Intensity Dynamics to Detect Deception

  • Conference paper
  • First Online:
Advances in Artificial Intelligence - IBERAMIA 2016 (IBERAMIA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10022))

Included in the following conference series:

Abstract

Detection of deceptive facial expressions, including estimating smile genuineness, is an important and challenging research topic that draws increasing attention from the computer vision and pattern recognition community. The state-of-the-art methods require localizing a number of facial landmarks to extract sophisticated facial characteristics. In this paper, we explore how to exploit fast smile intensity detectors to extract temporal features. This allows for real-time discrimination between posed and spontaneous expressions at the early smile onset phase. We report the results of experimental validation, which indicate high competitiveness of our method for the UvA-NEMO benchmark database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This appears not trivial for patients with mental disorders, e.g., schizophrenia [1].

References

  1. Barkhof, E., de Sonneville, L.M., Meijer, C.J., de Haan, L.: Specificity of facial emotion recognition impairments in patients with multi-episode schizophrenia. Schizophr. Res.: Cogn. 2(1), 12–19 (2015)

    Google Scholar 

  2. Ross, E.D., Pulusu, V.K.: Posed versus spontaneous facial expressions are modulated by opposite cerebral hemispheres. Cortex 49(5), 1280–1291 (2013)

    Article  Google Scholar 

  3. Trutoiu, L.C., Carter, E.J., Pollard, N., Cohn, J.F., Hodgins, J.K.: Spatial and temporal linearities in posed and spontaneous smiles. ACM Trans. Appl. Percept. 11(3), 12:1–12:15 (2014)

    Article  Google Scholar 

  4. Nalepa, J., Kawulok, M.: Adaptive memetic algorithm enhanced with data geometry analysis to select training data for SVMs. Neurocomputing 185, 113–132 (2016)

    Article  Google Scholar 

  5. Dibeklioğlu, H., Salah, A.A., Gevers, T.: Recognition of genuine smiles. IEEE Trans. Multimedia 17(3), 279–294 (2015)

    Article  Google Scholar 

  6. Wu, P., Liu, H., Zhang, X.: Spontaneous versus posed smile recognition using discriminative local spatial-temporal descriptors. In: Proceedings of the IEEE ICASSP, pp. 1240–1244 (2014)

    Google Scholar 

  7. Calder, A.J., Young, A.W.: Understanding the recognition of facial identity and facial expression. Nature Rev.: Neurosci. 6, 641–651 (2005)

    Article  Google Scholar 

  8. Martinez, B., Valstar, M.F.: Advances, challenges, and opportunities in automatic facial expression recognition. In: Kawulok, M., Celebi, M.E., Smolka, B. (eds.) Advances in Face Detection and Facial Image Analysis, pp. 63–100. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  9. Krumhuber, E.G., Likowski, K.U., Weyers, P.: Facial mimicry of spontaneous and deliberate Duchenne and non-Duchenne smiles. J. Nonverbal Behav. 38(1), 1–11 (2014)

    Article  Google Scholar 

  10. Girard, J.M., Cohn, J.F., Jeni, L.A., Sayette, M.A., De la Torre, F.: Spontaneous facial expression in unscripted social interactions can be measured automatically. Behav. Res. Methods 47(4), 1136–1147 (2015)

    Article  Google Scholar 

  11. Valstar, M.F., Pantic, M., Ambadar, Z., Cohn, J.F.: Spontaneous vs. posed facial behavior: automatic analysis of brow actions. In: Proceedings of the ICMI, pp. 162–170 (2006)

    Google Scholar 

  12. Cohn, J.F., Schmidt, K.L.: The timing of facial motion in posed and spontaneous smiles. Int. J. Wavelets Multiresolut. Inf. Process. 02(02), 121–132 (2004)

    Article  Google Scholar 

  13. Sénéchal, T., Turcot, J., el Kaliouby, R.: Smile or smirk? Automatic detection of spontaneous asymmetric smiles to understand viewer experience. In: Proceedings of the IEEE FG, pp. 1–8 (2013)

    Google Scholar 

  14. Dibeklioğlu, H., Valenti, R., Salah, A.A., Gevers, T.: Eyes do not lie: spontaneous versus posed smiles. In: ACM International Conference on Multimedia, pp. 1–4 (2010)

    Google Scholar 

  15. Gan, Q., Wu, C., Wang, S., Ji, Q.: Posed and spontaneous facial expression differentiation using deep boltzmann machines. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 643–648. IEEE (2015)

    Google Scholar 

  16. Zhao, G., Pietikäinen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)

    Article  Google Scholar 

  17. Smolka, B., Nurzynska, K.: Power LBP: a novel texture operator for smiling and neutral facial display classification. Procedia Comp. Sci. 51, 1555–1564 (2015)

    Article  Google Scholar 

  18. Abouelenien, M., Pérez-Rosas, V., Mihalcea, R., Burzo, M.: Deception detection using a multimodal approach. In: Proceedings of the ICMI, pp. 58–65. ACM, New York (2014)

    Google Scholar 

  19. Cohn, J., Reed, L., Moriyama, T., Xiao, J., Schmidt, K., Ambadar, Z.: Multimodal coordination of facial action, head rotation, and eye motion during spontaneous smiles. In: Proceedings of the IEEE FG, pp. 129–138 (2004)

    Google Scholar 

  20. Valstar, M.F., Gunes, H., Pantic, M.: How to distinguish posed from spontaneous smiles using geometric features. In: Proceedings of the ICMI, pp. 38–45. ACM (2007)

    Google Scholar 

  21. Rajoub, B.A., Zwiggelaar, R.: Thermal facial analysis for deception detection. IEEE Trans. Inf. Forensics Secur. 9(6), 1015–1023 (2014)

    Article  Google Scholar 

  22. Kawulok, M., Szymanek, J.: Precise multi-level face detector for advanced analysis of facial images. IET Image Process. 6(2), 95–103 (2012)

    Article  MathSciNet  Google Scholar 

  23. Kawulok, M., Nalepa, J.: Towards robust SVM training from weakly labeled large data sets. In: Proceedings of the ACPR, pp. 464–468 (2015)

    Google Scholar 

  24. Dibeklioğlu, H., Salah, A.A., Gevers, T.: Are you really smiling at me? Spontaneous versus posed enjoyment smiles. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 525–538. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Pfister, T., Li, X., Zhao, G., Pietikäinen, M.: Differentiating spontaneous from posed facial expressions within a generic facial expression recognition framework. In: Proceedings of the IEEE ICCV, pp. 868–875 (2011)

    Google Scholar 

  26. Kawulok, M., Wu, J., Hancock, E.R.: Supervised relevance maps for increasing the distinctiveness of facial images. Pattern Recogn. 44(4), 929–939 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Polish National Science Centre (NCN) under the Grant: DEC-2012/07/B/ST6/01227.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Kawulok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kawulok, M., Nalepa, J., Nurzynska, K., Smolka, B. (2016). In Search of Truth: Analysis of Smile Intensity Dynamics to Detect Deception. In: Montes y Gómez, M., Escalante, H., Segura, A., Murillo, J. (eds) Advances in Artificial Intelligence - IBERAMIA 2016. IBERAMIA 2016. Lecture Notes in Computer Science(), vol 10022. Springer, Cham. https://doi.org/10.1007/978-3-319-47955-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47955-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47954-5

  • Online ISBN: 978-3-319-47955-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics