Abstract
Detection of deceptive facial expressions, including estimating smile genuineness, is an important and challenging research topic that draws increasing attention from the computer vision and pattern recognition community. The state-of-the-art methods require localizing a number of facial landmarks to extract sophisticated facial characteristics. In this paper, we explore how to exploit fast smile intensity detectors to extract temporal features. This allows for real-time discrimination between posed and spontaneous expressions at the early smile onset phase. We report the results of experimental validation, which indicate high competitiveness of our method for the UvA-NEMO benchmark database.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This appears not trivial for patients with mental disorders, e.g., schizophrenia [1].
References
Barkhof, E., de Sonneville, L.M., Meijer, C.J., de Haan, L.: Specificity of facial emotion recognition impairments in patients with multi-episode schizophrenia. Schizophr. Res.: Cogn. 2(1), 12–19 (2015)
Ross, E.D., Pulusu, V.K.: Posed versus spontaneous facial expressions are modulated by opposite cerebral hemispheres. Cortex 49(5), 1280–1291 (2013)
Trutoiu, L.C., Carter, E.J., Pollard, N., Cohn, J.F., Hodgins, J.K.: Spatial and temporal linearities in posed and spontaneous smiles. ACM Trans. Appl. Percept. 11(3), 12:1–12:15 (2014)
Nalepa, J., Kawulok, M.: Adaptive memetic algorithm enhanced with data geometry analysis to select training data for SVMs. Neurocomputing 185, 113–132 (2016)
Dibeklioğlu, H., Salah, A.A., Gevers, T.: Recognition of genuine smiles. IEEE Trans. Multimedia 17(3), 279–294 (2015)
Wu, P., Liu, H., Zhang, X.: Spontaneous versus posed smile recognition using discriminative local spatial-temporal descriptors. In: Proceedings of the IEEE ICASSP, pp. 1240–1244 (2014)
Calder, A.J., Young, A.W.: Understanding the recognition of facial identity and facial expression. Nature Rev.: Neurosci. 6, 641–651 (2005)
Martinez, B., Valstar, M.F.: Advances, challenges, and opportunities in automatic facial expression recognition. In: Kawulok, M., Celebi, M.E., Smolka, B. (eds.) Advances in Face Detection and Facial Image Analysis, pp. 63–100. Springer, Heidelberg (2016)
Krumhuber, E.G., Likowski, K.U., Weyers, P.: Facial mimicry of spontaneous and deliberate Duchenne and non-Duchenne smiles. J. Nonverbal Behav. 38(1), 1–11 (2014)
Girard, J.M., Cohn, J.F., Jeni, L.A., Sayette, M.A., De la Torre, F.: Spontaneous facial expression in unscripted social interactions can be measured automatically. Behav. Res. Methods 47(4), 1136–1147 (2015)
Valstar, M.F., Pantic, M., Ambadar, Z., Cohn, J.F.: Spontaneous vs. posed facial behavior: automatic analysis of brow actions. In: Proceedings of the ICMI, pp. 162–170 (2006)
Cohn, J.F., Schmidt, K.L.: The timing of facial motion in posed and spontaneous smiles. Int. J. Wavelets Multiresolut. Inf. Process. 02(02), 121–132 (2004)
Sénéchal, T., Turcot, J., el Kaliouby, R.: Smile or smirk? Automatic detection of spontaneous asymmetric smiles to understand viewer experience. In: Proceedings of the IEEE FG, pp. 1–8 (2013)
Dibeklioğlu, H., Valenti, R., Salah, A.A., Gevers, T.: Eyes do not lie: spontaneous versus posed smiles. In: ACM International Conference on Multimedia, pp. 1–4 (2010)
Gan, Q., Wu, C., Wang, S., Ji, Q.: Posed and spontaneous facial expression differentiation using deep boltzmann machines. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 643–648. IEEE (2015)
Zhao, G., Pietikäinen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)
Smolka, B., Nurzynska, K.: Power LBP: a novel texture operator for smiling and neutral facial display classification. Procedia Comp. Sci. 51, 1555–1564 (2015)
Abouelenien, M., Pérez-Rosas, V., Mihalcea, R., Burzo, M.: Deception detection using a multimodal approach. In: Proceedings of the ICMI, pp. 58–65. ACM, New York (2014)
Cohn, J., Reed, L., Moriyama, T., Xiao, J., Schmidt, K., Ambadar, Z.: Multimodal coordination of facial action, head rotation, and eye motion during spontaneous smiles. In: Proceedings of the IEEE FG, pp. 129–138 (2004)
Valstar, M.F., Gunes, H., Pantic, M.: How to distinguish posed from spontaneous smiles using geometric features. In: Proceedings of the ICMI, pp. 38–45. ACM (2007)
Rajoub, B.A., Zwiggelaar, R.: Thermal facial analysis for deception detection. IEEE Trans. Inf. Forensics Secur. 9(6), 1015–1023 (2014)
Kawulok, M., Szymanek, J.: Precise multi-level face detector for advanced analysis of facial images. IET Image Process. 6(2), 95–103 (2012)
Kawulok, M., Nalepa, J.: Towards robust SVM training from weakly labeled large data sets. In: Proceedings of the ACPR, pp. 464–468 (2015)
Dibeklioğlu, H., Salah, A.A., Gevers, T.: Are you really smiling at me? Spontaneous versus posed enjoyment smiles. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 525–538. Springer, Heidelberg (2012)
Pfister, T., Li, X., Zhao, G., Pietikäinen, M.: Differentiating spontaneous from posed facial expressions within a generic facial expression recognition framework. In: Proceedings of the IEEE ICCV, pp. 868–875 (2011)
Kawulok, M., Wu, J., Hancock, E.R.: Supervised relevance maps for increasing the distinctiveness of facial images. Pattern Recogn. 44(4), 929–939 (2011)
Acknowledgements
This work has been supported by the Polish National Science Centre (NCN) under the Grant: DEC-2012/07/B/ST6/01227.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Kawulok, M., Nalepa, J., Nurzynska, K., Smolka, B. (2016). In Search of Truth: Analysis of Smile Intensity Dynamics to Detect Deception. In: Montes y Gómez, M., Escalante, H., Segura, A., Murillo, J. (eds) Advances in Artificial Intelligence - IBERAMIA 2016. IBERAMIA 2016. Lecture Notes in Computer Science(), vol 10022. Springer, Cham. https://doi.org/10.1007/978-3-319-47955-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-47955-2_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47954-5
Online ISBN: 978-3-319-47955-2
eBook Packages: Computer ScienceComputer Science (R0)