Skip to main content

A Motion Planning Architecture for Conveyance Tasks with a Quadruped Robot

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 14 (IAS 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 531))

Included in the following conference series:

  • 2589 Accesses

Abstract

This paper describes a motion planning architecture for a quadruped robot used for conveyance tasks. The architecture is designed to guarantee robot’s locomotion stability using only proprioceptive information. The robot is equipped with linear displacement sensors and pressure sensors located on the hydraulic cylinders used as actuators, a gyroscope on the main body and contact sensors on the leg tips. The robot knowledge is limited to proprioceptive sensory data and no a priori information is given about the environment. The resulting walking behaviour is validated through simulations on both flat terrain (with unknown objects along the path) and slopes. The gait is performed using a generic leg sequence and a simplified foothold planner. Initial experiments on the real platform have been carried out as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wooden, D., Malchano, M., Blankespoor, K., Howardy, A., Rizzi, A., Raibert, M.: Autonomous navigation for Big Dog. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA 2010), Anchorage, Alaska, USA, May 2010

    Google Scholar 

  2. Semini, C., Khan, H., Frigerio, M., Boaventura, T., Focchi, M., Buchli, J., Caldwell, D.: Design and scaling of versatile quadruped robots. In: Proceedings of the 15th International Conference on Climbing and Walking Robots CLAWAR, Baltimore. Maryland, USA, July 2012

    Google Scholar 

  3. Murphy, M., Saunders, A., Moreira, C., Rizzi, A., Raibert, M.: The Little Dog robot. Int. J. Robot. Res. 30(2), 145–149 (2011)

    Article  Google Scholar 

  4. McGhee, R., Frank, A.: On the stability properties of quadruped creeping gaits. Math. Biosci. 3, 331–351 (1968)

    Article  MATH  Google Scholar 

  5. Zhang, C., Song, S.-M.: Stability analysis of wave-crab gaits of a quadruped. J. Robot. Syst. 7(2), 243–276 (1990)

    Article  MATH  Google Scholar 

  6. Messuri, D., Klein, C.: Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion. IEEE Robot. Autom. Mag. 1(3), 132–141 (1985)

    Article  Google Scholar 

  7. Hirose, S., Tsukagoshi, H., Yoneda, K.: Normalized energy stability margin and its contour of walking vehicles on rough terrain. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA 2001), Seoul, South Korea, May 2001

    Google Scholar 

  8. Garcia, E., Estremera, J., de Santos, P.G.: A comparative study of stability margins for walking machines. Robotica 20, 595–606 (2002)

    Article  Google Scholar 

  9. McGhee, R.: Some finite state aspects of legged locomotion. Math. Biosci. 2(1–2), 67–84 (1968)

    Article  MATH  Google Scholar 

  10. Hirose, S., Nose, M., Kikuchi, H., Umetani, Y.: Adaptive gait control of a quadruped walking vehicle. Int. J. Robot. Res. 3(2), 113–133 (1984)

    Google Scholar 

  11. Bares, J., Wettergreen, D.: Dante II: technical description, results and lessons learned. Int. J. Robot. Res. 18(7), 621–649 (1999)

    Article  Google Scholar 

  12. Tsukagoshi, H., Hirose, S.: Teaching and programing for robots. The proposal of the intermittent crawl gait and its generation. J. Robot. Soc. Jpn. 17(2), 301–309

    Google Scholar 

  13. Zhang, L., Ma, S., Inoue, K.: Several insights into omnidirectional static walking of a quadruped robot on a slope. In: Proceedings of the 2006 IEEE-RSJ International Conference on Intelligent Robots and Systems (IROS 2006), Beijing, China, Sept 2006

    Google Scholar 

  14. Pongas, D., Mistry, M., Schaal, S.: A robust quadruped walking gait for traversing rough terrain. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation (ICRA 2007), Rome, Italy, Apr 2007

    Google Scholar 

  15. Johnson, K.: Contact Mechanics. Cambridge University Press, Cambridge, MA (1987)

    Google Scholar 

  16. Schafer, M.: Computational Engineering: Introduction to Numerical Methods. Springer, Heidelberg-Berlin (2006)

    Google Scholar 

  17. FunctionBay GmbH: Recurdyn. http://www.functionbay.de/ (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulvio Mastrogiovanni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cerruti, G., Guo, WZ., Mastrogiovanni, F. (2017). A Motion Planning Architecture for Conveyance Tasks with a Quadruped Robot. In: Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H. (eds) Intelligent Autonomous Systems 14. IAS 2016. Advances in Intelligent Systems and Computing, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-319-48036-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48036-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48035-0

  • Online ISBN: 978-3-319-48036-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics