Abstract
The FieldLut algorithm is a widely used localization algorithm in the RoboCup MSL (Middle Size League). It is now used for indoor mobile robot localization, but it can only use 2D range data. This paper improves the FieldLut algorithm to allow the use of 3D range data for indoor localization and uses Kinect sensor as the input sensor. The core of our improvement is the creation of a 3D LUT (lookup table). The 3D LUT is created as a multi-layer 2D LUT. Additionally, a memory optimization method is proposed. Experimental result shows real-time performance at video rates and high accuracy; for example, using Kinect sensor, the localization error is below 15 cm in a 13 × 8 m room and the repeat localization is below 6 cm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lauer, M., Lange, S., Riedmiller, M.: Calculating the perfect match: an efficient and accurate approach for robot self-localization. Lecture Notes Comput. Sci. J. 4020(2006), 142–153 (2005)
Wiki. Middle Size League of RoboCup. http://wiki.robocup.org/wiki/Middle_Size_League (3.21)
Gouveia, M., Moreira, A. P., Costa, P. et al.: Robustness and precision analysis in map-matching based mobile robot self-localization. In: Fourteenth Portuguese Conference on Artificial Intelligence, pp. 243–253 (2009)
Wiki. Kinect. http://en.wikipedia.org/wiki/Kinect (4.26)
Engelhard, N., Endres, F., Hess, J. et al.: Real-time 3D visual SLAM with a hand-held RGB-D camera. In: RSS 2010 Workshop on RGB-D Cameras (2010)
Henry, P., Krainin, M., Herbst, E. et al.: (2010) RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments. In: RSS 2010 Workshop on RGB-D Cameras
Fioraio, N., Konolige, K.: Realtime visual and point cloud SLAM. In: RSS 2010 Workshop on RGB-D Cameras (2011)
Izadi, S., Newcombe, R. A., Kim, D. et al.: Kinectfusion: real-time dynamic 3d surface reconstruction and interaction. In: ACM SIGGRAPH 2011 (2011)
Cunha, J., Pedrosa, E., Cruz, C. et al.: Using a depth camera for indoor robot localization and navigation. In: RSS 2010 Workshop on RGB-D Cameras (2011)
Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: IEEE International Conference on Neural Networks, pp. 586–591 (1993)
Riedmiller, M., Braun, H.: Rprop-description and implementation details. Citeseer (1994)
Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 239–256 (1992)
Yan, P., Bowyer, K.W.: A fast algorithm for ICP-based 3D shape biometrics. Comput. Vis. Iimage Underst. J. 107(3), 195–202 (2007)
Tubic, D., Hébert, P., laurendeau, D.: A volumetric approach for interactive 3D modeling[A]. In: the 1st International Symposium on 3D Data Processing, Visualisation and Transmission (3DPVT02)[C], Padova, pp. 150–158 (2002)
Acknowledgements
We thank the support of China Postdoctoral Science Foundation, No. 2015M571561 and the National Natural Science Foundation of China, No. 61273331.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zhu, X., Cao, Q., Wang, W. (2017). 3D FieldLut Algorithm Based Indoor Localization for Planar Mobile Robots Using Kinect. In: Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H. (eds) Intelligent Autonomous Systems 14. IAS 2016. Advances in Intelligent Systems and Computing, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-319-48036-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-48036-7_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48035-0
Online ISBN: 978-3-319-48036-7
eBook Packages: EngineeringEngineering (R0)