Skip to main content

Optimal Trajectory Planning for Manipulators with Flexible Curved Links

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 14 (IAS 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 531))

Included in the following conference series:

Abstract

Trajectory planning for manipulators with flexible links is a complicated task that plays an important role in design and application of manipulators. This paper is concerned with optimal trajectory planning for a two-link manipulator consisting of a macro flexible curved link and a micro rigid link for a point-to-point motion task. Absolute nodal coordinate formulation (ANCF) is used to derive the dynamic equations of the flexible curved link, an optimal trajectory method is adopted to generate the trajectory that minimizes the vibration of the flexible curved link. The Hamiltonian function is formed and the necessary conditions for optimality are derived from the Pontryagin’s minimum principle (PMP). The obtained equations form a two-point boundary value problem (TPBVP) which can be solved by numerical techniques. Finally, simulations for the two-link manipulator are carried out to demonstrate the efficiency of the presented method. The results illustrate the validity of the method to overcome the high nonlinearity nature of the whole system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41(7), 749–777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dubus, G., David, O., Measson, Y.: Vibration control of a flexible arm for the ITER maintenance using unknown visual features from inside the vessel. In: IEEE/RSJ International Conference. Intelligent Robots and Systems. IROS 2009, pp. 5697–5704. IEEE (2009)

    Google Scholar 

  3. Winfrey, R.C.: Dynamic analysis of elastic link mechanisms by reduction of coordinates. J. Eng. Ind. 94(2), 577–581 (1972)

    Article  Google Scholar 

  4. Turcic, D.A., Midha, A., Bosnik, J.R.: Dynamic analysis of elastic mechanism systems. Part II: Experimental results. J. Dyn. Syst. Meas. Control 106(4), 255–260 (1984)

    Google Scholar 

  5. Theodore, R.J., Ghosal, A.: Comparison of the assumed modes and finite element models for flexible multilink manipulators. Int. J. Robot. Res. 14(2), 91–111 (1995)

    Article  Google Scholar 

  6. Boscariol, P., Gasparetto, A.: Model-based trajectory planning for flexible-link mechanisms with bounded jerk. Robot. Comput.-Integr. Manuf. 29(4), 90–99 (2013)

    Article  Google Scholar 

  7. Shabana, A.A.: Dynamics of multibody systems. Cambridge university press. (2013)

    Google Scholar 

  8. Seo, J.H., Sugiyama, H., Shabana, A.A.: Three-dimensional large deformation analysis of the multibody pantograph/catenary systems. Nonlinear Dyn. 42(2), 199–215 (2005)

    Article  MATH  Google Scholar 

  9. Zhao, J., Tian, Q., Hu, H.Y.: Deployment dynamics of a simplified spinning IKAROS solar sail via absolute coordinate based method. Acta. Mech. Sin. 29(1), 132–142 (2013)

    Article  Google Scholar 

  10. Lin, L., Lu, J., Chen, W.: Modeling and simulation of EAST flexible in-vessel inspection robot based on absolute nodal coordinate formulation. In: 2014 IEEE International Conference Robotics and Biomimetics (ROBIO), pp. 161–166. IEEE (2014)

    Google Scholar 

  11. Gasparetto, A., Zanotto, V.: A technique for time-jerk optimal planning of robot trajectories. Robot. Comput.-Integr. Manuf. 24(3), 415–426 (2008)

    Article  Google Scholar 

  12. Hull, D.G.: Conversion of optimal control problems into parameter optimization problems. J. Guid. Control Dyn. 20(1), 57–60 (1997)

    Article  MATH  Google Scholar 

  13. Wang, C.Y.E., Timoszyk, W.K., Bobrow, J.E.: Payload maximization for open chained manipulators: finding weightlifting motions for a Puma 762 robot. IEEE Trans. Robot. Autom. 17(2), 218–224 (2001)

    Article  Google Scholar 

  14. Faris, W.F., Ata, A., Sa’adeh, M.Y.: Energy minimization approach for a two-link flexible manipulator. J. Vibr. Control (2009)

    Google Scholar 

  15. Kirk, D.E.: Optimal Control Theory: An Introduction. Courier Corporation (2012)

    Google Scholar 

  16. Korayem, M.H., Haghpanahi, M., Rahimi, H.N.: Finite element method and optimal control theory for path planning of elastic manipulators. In: New Advances in Intelligent Decision Technologies, pp. 117–126. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  17. Sugiyama, H., Suda, Y.: A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 221(2), 219–231 (2007)

    Article  Google Scholar 

  18. Liu, C., Tian, Q., Hu, H.: New spatial curved beam and cylindrical shell elements of gradient-deficient absolute nodal coordinate formulation. Nonlinear Dyn. 70(3), 1903–1918 (2012)

    Article  MathSciNet  Google Scholar 

  19. Sugiyama, H., Escalona, J.L., Shabana, A.A.: Formulation of three-dimensional joint constraints using the absolute nodal coordinates. Nonlinear Dyn. 31(2), 167–195 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45(1–2), 109–130 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by China Domestic Research Project for the International Thermonuclear Experimental Reactor (ITER) under Grant 2012GB102001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhao, L., Wang, H., Chen, W. (2017). Optimal Trajectory Planning for Manipulators with Flexible Curved Links. In: Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H. (eds) Intelligent Autonomous Systems 14. IAS 2016. Advances in Intelligent Systems and Computing, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-319-48036-7_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48036-7_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48035-0

  • Online ISBN: 978-3-319-48036-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics