Skip to main content

An Energy Management Approach in Hybrid Energy System Based on Agent’s Coordination

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016 (AISI 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 533))

Abstract

Recently, the field of energy management is studied and most solutions are based on systems with centralized architectures; the latter is characterized by several advantages, but also disadvantages such as fault tolerance or the adaptability to changes in the SEH. In addition, these systems are often difficult to design because of the “top-down” approach used: the designer usually knows how each element must respond autonomously, but a centralized management system focuses only on the overall system response. A proposal for a solution to this problem is presented in this document; it relates to a distributed management solution based on the paradigm of multi-agent systems (MAS). This solution is based on a “bottom-up” approach to ensure better system reliability. After analyzing the previous work, a description of MAS and communication protocol between agents for energy management in a hybrid energy system (photovoltaic, wind) with energy storage is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duy-Long, H.: Un système avancé de gestion d’énergie dans le bâtiment pour coordonner production et consommation. Thèse, Institut polytechnique de Grenoble (2007)

    Google Scholar 

  2. Campoccia, A., Dusonchet, L., Telaretti, E., Zizzo, G.: Comparative analysis of different supporting measures for the production of electrical energy by solar PV and wind systems: four representative European cases. Sol. Energy 83(3), 287–297 (2009)

    Article  Google Scholar 

  3. Mohammadi, M., Hosseinian, S.H., Gharehpetian, G.B.: Optimization of hybrid solar energy sources/wind turbine systems integrated to utility grids as microgrid (MG) under pool/bilateral/hybrid electricity market using PSO. Sol. Energy 86(1), 112–125 (2012)

    Article  Google Scholar 

  4. Askarzadeh, A.: Developing a discrete harmony search algorithm for size optimization of wind–photovoltaic hybrid energy system. Sol. Energy 98, 190–195 (2013)

    Article  Google Scholar 

  5. Merei, G., Berger, C., Sauer, D.U.: Optimization of an off-grid hybrid PV-wind-diesel system with different battery technologies using genetic algorithm. Sol. Energy 97, 460–473 (2013)

    Article  Google Scholar 

  6. Bayod-Rujula, A.A., Haro-Larrode, M.E., Martınez-Gracia, A.: Sizing criteria of hybrid photovoltaic–wind systems with battery storage and self-consumption considering interaction with the grid. Sol. Energy 98, 582–591 (2013)

    Article  Google Scholar 

  7. Kremers, E., Gonzalez de Durana, J., Barambones, O.: Multi-agent modeling for the simulation of a simple smart microgrid. Energy Convers. Manage. 75, 643–650 (2013)

    Article  Google Scholar 

  8. Da Rosa, M.A., Leite da Silva, A.M., Miranda, V.: Multi-agent systems applied to reliability assessment of power systems. Int. J. Electr. Power Energy Syst. 42(1), 367–374 (2012)

    Article  Google Scholar 

  9. Pipattanasomporn, M., Feroze, H., Rahman, S.: Securing critical loads in a PV-based microgrid with a multi-agent system. Renew. Energy 39(1), 166–174 (2012)

    Article  Google Scholar 

  10. El-Shater, T.F., Eskander, M.N., El-Hagry, M.T.: Energy flow and management of a hybrid wind/pv/fuel cell generation system. Int. J. Sustain. Energy 25(2), 91–106 (2006)

    Article  Google Scholar 

  11. El-Shater, T.F., Eskander, M.N., El-Hagry, M.T.: Energy flow and management of a hybrid wind/pv/fuel cell generation system. Energy Convers. Manage. 47(9–10), 1264–1280 (2006)

    Article  Google Scholar 

  12. Becherif, M., Paire, D., Miraoui, A.: Energy management of dolar panel and battery system with passive control. In: International Conference on ICCEP 2007 (2007)

    Google Scholar 

  13. Paire, D., Becherif, M., Miraoui, A.: Passivity-based control of hybrid sources applied to a traction system. In: Workshop on Hybrid and Solar Vehicles, Italy (2006)

    Google Scholar 

  14. Roche, R., Idoumghar, L., Suryanarayanan, S., Daggag, M., Solacolu, C.A., Miraoui, A.: A flexible and efficient multi-agent gas turbine power plant energy management system with economic and environmental constraints. Appl. Energy 101, 644–654 (2012)

    Article  Google Scholar 

  15. Lagorse, J., Paire, D., Miraoui, A.: A multi-agent system for energy management of distributed power sources. Renew. Energy 35(1), 174–182 (2010)

    Article  Google Scholar 

  16. Jiang, Z.: Agent-based power sharing scheme for active hybrid power sources. J. Power Sources 177(1), 231–238 (2008)

    Article  Google Scholar 

  17. Wu, K., Zhou, H.: A multi-agent-based energy-coordination control system for grid-connected large-scale wind–photovoltaic energy storage power-generation units. Sol. Energy 107, 245–259 (2014)

    Article  Google Scholar 

  18. Kovaltchouk, T., Blavette, A., Ben Ahmed, H., Multon, B., Aubry, J.: Energy converter farm comparison between centralized and decentralized storage energy management for direct wave. In: Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER) (2015)

    Google Scholar 

  19. Saba, D., Laallam, F.Z., Hadidi, A.E., Berbaoui, B.: Contribution to the management of energy in the systems multi renewable sources with energy by the application of the multi agents systems “MAS”. Energy Procedia 74, 616–623 (2015)

    Article  Google Scholar 

  20. Saba, D., Laallam, F.Z., Hadidi, A.E., Berbaoui, B.: Optimization of a multi-source system with renewable energy based on ontology. Energy Procedia 74, 608–615 (2015)

    Article  Google Scholar 

  21. Saba, D., Laallam, F.Z., Belmili, H., Hadidi, A.: Contribution of renewable energy hybrid system control based of multi agent system coordination. In: The Symposium on Complex Systems and Intelligent Computing (CompSIC 2015) (2015)

    Google Scholar 

  22. Omatu, S., Neves, J., Corchado Rodríguez, J.M., González, S.R., Paz Santana, J.F., Gonzalez, S.R. (eds.): Distributed Computing & Artificial Intelligence. AISC, vol. 217. Springer, Heidelberg (2014). doi:10.1007/978-3-319-00551-5

    Google Scholar 

  23. Omatu, S., Bersini, H., Corchado Rodríguez, J.M., González, S.R., Pawlewski, P., Bucciarelli, E. (eds.): Distributed Computing and Artificial Intelligence, 11th International Conference. AISC, vol. 290. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07593-8

    Google Scholar 

  24. Hãkansson, A., Hartung, R., Nguyen, N.T. (eds.): Agent and Multi-agent Technology for Internet and Enterprise Systems. SCI, vol. 289. Springer, Heidelberg (2010). ISBN 978-3-642-13525-5

    Google Scholar 

  25. Ferber, J.: Les Systèmes Multi Agents: vers une intelligence collective. InterEditions IIA, Paris (1995)

    Google Scholar 

  26. Kaczorek, T.: A new formulation and solution of the minimum energy control problem of positive 2D continuous-discrete linear systems. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. AISC, vol. 267, pp. 103–114. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  27. Kociszewski, R.: Minimum energy control of fractional discrete-time linear systems with delays in state and control. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. AISC, vol. 267, pp. 127–136. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  28. Charif, Y., Sabouret N.: Interaction protocol for service composition in the room. In: JFSMA2006, pp. 253–266 (2006)

    Google Scholar 

  29. Bryson, J., Stein, L.A.: Modularity and specialized learning in the organization of behaviour. In: French, R.M., Sougné, J.P. (eds.) Connectionist Models of Learning, Development and Evolution, pp. 53–62. Springer, Heidelberg (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamel Saba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Saba, D., Laallam, F.Z., Berbaoui, B., Abanda, F.H. (2017). An Energy Management Approach in Hybrid Energy System Based on Agent’s Coordination. In: Hassanien, A., Shaalan, K., Gaber, T., Azar, A., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016. AISI 2016. Advances in Intelligent Systems and Computing, vol 533. Springer, Cham. https://doi.org/10.1007/978-3-319-48308-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48308-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48307-8

  • Online ISBN: 978-3-319-48308-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics