Skip to main content

3D Mesh Segmentation Based on Unsupervised Clustering

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016 (AISI 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 533))

Abstract

3D mesh segmentation is considered an important process in the field of computer graphics. It is a fundamental process in different applications such as shape reconstruction in reverse engineering, 3D models retrieval, and CAD/CAM applications, etc. It consists of subdividing a polygonal surface into patches of uniform properties either from a geometrical point of view or from a perceptual/semantic point of view. In this paper, unsupervised clustering techniques for the 3D mesh segmentation problem are introduced. The K-means and the Fuzzy C-means (FCM) clustering techniques are selected for the development of the proposed clustering-based 3D mesh segmentation techniques. Since the mesh faces are considered the main element, the clustering technique is applied to the dual mesh. The 3D Euclidean distance is used as the distance measure to compute matching between mesh elements. Based on empirical results on a benchmark dataset of 3D mesh models, the FCM-based mesh segmentation technique outperforms the K-means-based one in terms of accuracy and consistency with human segmentations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, H., Lu, T., Au, O., Tai, C.: Spectral 3D mesh segmentation with a novel single segmentation field. Graph. Models 76(5), 440–456 (2014)

    Article  Google Scholar 

  2. Guha, S.: 3D mesh segmentation using local geometry. Int. J. Comput. Graph. Anim. 5(2), 37 (2015)

    Article  Google Scholar 

  3. Gu, M., Duan, L., Wang, M., Bai, Y., Shao, H., Wang, H., Liu, F.: An improved approach of mesh segmentation to extract feature regions. PLoS ONE 10, 10 (2015)

    Google Scholar 

  4. Jia, H., Zhang, J.: Extract segmentation lines of 3D model based on regional discrete curvature. Int. J. Sig. Process. Image Process. Pattern Recogn. 9(1), 265–274 (2016)

    MathSciNet  Google Scholar 

  5. Khattab, D., Ebied, H.M., Hussein, A.S., Tolba, M.F.: A comparative study of different color space models using FCM-based automatic GrabCut for image segmentation. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9155, pp. 489–501. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21404-7_36

    Chapter  Google Scholar 

  6. Khattab, D., Ebeid, H.M., Hussein, A.S., Tolba, M.F.: Clustering-based Image Segmentation using automatic GrabCut. In: Proceedings of the 10th International Conference on Informatics and Systems (INFOS 2016), Cairo (2016)

    Google Scholar 

  7. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. of Cybern. 3(3), 32–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Aca-demic Publishers, Norwell (1981)

    Book  MATH  Google Scholar 

  10. Rother, C., Kolmogorov, V., Blake, A.: GrabCut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

    Article  Google Scholar 

  11. Zuckerberger, E., Tal, A., Shlafman, S.: Polyhedral surface decomposition with applications. Comput. Graph. 26(5), 733–743 (2002)

    Article  Google Scholar 

  12. Lavoué, G., Dupont, F., Baskurt, A.: A new CAD mesh segmentation method, based on curvature tensor analysis. Comput. Aided Des. 37(10), 975–987 (2005)

    Article  MATH  Google Scholar 

  13. Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 22(3), 181–193 (2006)

    Article  Google Scholar 

  14. Lai, Y.-K., Zhou, Q.-Y., Hu, S.-M., Martin, R.R.: Feature sensitive mesh segmentation. In: Proceedings of the ACM Symposium on Solid and Physical Modeling, pp. 17–25. ACM (2006)

    Google Scholar 

  15. Manay, S., Hong, B.-W., Yezzi, A.J., Soatto, S.: Integral invariant signatures. In: Pajdla, T., Matas, J(George) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 87–99. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Liu, R., Zhang, H.: Segmentation of 3D meshes through spectral clustering. In: Proceedings of the 12th Pacific Conference on Computer Graphics and Applications, pp. 398–305. IEEE (2004)

    Google Scholar 

  17. Liu, R., Zhang, H.: Mesh segmentation via spectral embedding and contour analysis. Comput. Graph. Forum 26(3), 385–394 (2007)

    Article  Google Scholar 

  18. Tierny, J., Vandeborre, J.-P., Daoudi, M.: Topology driven 3D mesh hierarchical segmentation. In: Proceedings of IEEE International Conference on Shape Modeling and Applications (SMI 2007), pp. 215–220. IEEE (2007)

    Google Scholar 

  19. Au, O.K.-C., Tai, C.-L., Chu, H.-K., Daniel, C.-O., Lee, T.-Y.: Skeleton extraction by mesh contraction. ACM Trans. Graph. (TOG) 27(3), 44 (2008). ACM

    Article  Google Scholar 

  20. Wu, H.-Y., Pan, C., Pan, J., Yang, Q., Ma, S.: A sketch-based interactive framework for real-time mesh segmentation. In: Computer Graphics International (2007)

    Google Scholar 

  21. Fan, L., Liu, K.: Paint mesh cutting. Comput. Graph. Forum Wiley Online Libr. 30(2), 603–612 (2011)

    Article  Google Scholar 

  22. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3D mesh segmentation and labeling. ACM Trans. Graph. (TOG) 29(4), 102 (2010)

    Article  Google Scholar 

  23. Giorgi, D., Biasotti, S., Paraboschi, L.: SHREC: Shape retrieval contest: Watertight models track (2007). http://watertight.ge.imati.cnr.it/

  24. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: 8th IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 416–423 (2001)

    Google Scholar 

  25. Unnikrishnan, R., Hebert, M.: Measures of similarity. In: 7th IEEE Workshops on Application of Computer Vision, p. 394. IEEE (2005)

    Google Scholar 

  26. Meilǎ, M.: Comparing clusterings: an axiomatic view. In: Proceedings of the 22nd International Conference on Machine learning, pp. 577–584. ACM (2005)

    Google Scholar 

  27. Peng, B., Zhang, L., Zhang, D.: A survey of graph theoretical approaches to image segmentation. Pattern Recogn. 46(3), 1020–1038 (2013)

    Article  Google Scholar 

  28. Yang, A.Y., Wright, J., Ma, Y., Sastry, S.S.: Unsupervised segmentation of natural images via lossy data compression. Comput. Vis. Image Underst. 110(2), 212–225 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Khattab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Khattab, D., Ebeid, H.M., Hussein, A.S., Tolba, M.F. (2017). 3D Mesh Segmentation Based on Unsupervised Clustering. In: Hassanien, A., Shaalan, K., Gaber, T., Azar, A., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016. AISI 2016. Advances in Intelligent Systems and Computing, vol 533. Springer, Cham. https://doi.org/10.1007/978-3-319-48308-5_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48308-5_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48307-8

  • Online ISBN: 978-3-319-48308-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics