Skip to main content

Improved GrabCut for Human Brain Computerized Tomography Image Segmentation

  • Conference paper
  • First Online:
Health Information Science (HIS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10038))

Included in the following conference series:

Abstract

In this paper, we modified GrabCut for gray-scale slice-stacked medical image segmentation. First, GrabCut was extended from planar to volume image processing. Second, we simplified manual interaction by drawing a polygon for one volume instead of a rectangle. After that, twenty human brain computerized tomography images were analyzed. Experimental results show that the modified algorithm is simple and fast, and enhances segmentation accuracy compared with the confidence connection algorithm. Moreover, the algorithm is reproducible with respect to different users and consequently it can release physicians from this kind of time-consuming and laborious tasks. In addition, this method can be used for other types of medical volume image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dhawan, A.P.: Medical Image Analysis. Wiley, New York (2011)

    Book  Google Scholar 

  2. Ezzell, G.A., Galvin, J.M., et al.: Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med. Phys. 30(8), 2089–2115 (2003)

    Article  Google Scholar 

  3. Xing, L., Thorndyke, B., et al.: Overview of image-guided radiation therapy. Med. Dosim. 31(2), 91–112 (2006)

    Article  Google Scholar 

  4. Xie, Y., Djajaputra, D., et al.: Intrafractional motion of the prostate during hypofractionated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 72(1), 236–246 (2008)

    Article  Google Scholar 

  5. Xie, Y., Chao, M., et al.: Feature-based rectal contour propagation from planning CT to cone beam CT. Med. Phys. 35(10), 4450–4459 (2008)

    Article  Google Scholar 

  6. Chao, M., Xie, Y., Xing, L.: Auto-propagation of contours for adaptive prostate radiation therapy. Phys. Med. Biol. 53(17), 4533 (2008)

    Article  Google Scholar 

  7. Khodr, Z.G., Sak, M.A., et al.: Determinants of the reliability of ultrasound tomography sound speed estimates as a surrogate for volumetric breast density. Med. Phys. 42(10), 5671–5678 (2015)

    Article  Google Scholar 

  8. Zhou, W., Xie, Y.: Interactive contour delineation and refinement in treatment planning of image-guided radiation therapy. J. Appl. Clin. Med. Phys. 15(1), 4499 (2014)

    Google Scholar 

  9. Zhou, W., Xie, Y.: Interactive medical image segmentation using snake and multiscale curve editing. Comput. Math. Methods Med. 2013 (2013)

    Google Scholar 

  10. Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 322–325 (2000)

    Article  Google Scholar 

  11. Dirami, A., Hammouche, K., et al.: Fast multilevel thresholding for image segmentation through a multiphase level set method. Sig. Process. 93(1), 139–153 (2013)

    Article  Google Scholar 

  12. Cai, H., Yang, Z., et al.: A new iterative triclass thresholding technique in image segmentation. IEEE Trans. Image Process. 23(3), 1038–1046 (2014)

    Article  MathSciNet  Google Scholar 

  13. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 1(11), 1222–1239 (2001)

    Article  Google Scholar 

  14. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. ICCV 2001(1), 105–112 (2001)

    Google Scholar 

  15. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 23(3), 309–314 (2004)

    Article  Google Scholar 

  16. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)

    Article  Google Scholar 

  17. Yin, S., Zhao, X., Wang, W., Gong, M.: Efficient multilevel image segmentation through fuzzy entropy maximization and graph cut optimization. Pattern Recogn. 47(9), 2894–2907 (2014)

    Article  Google Scholar 

  18. Temoche, P., Carmona, R.: A volume segmentation approach based on GrabCut. CLEI Electron. J. 16(2), 4–4 (2013)

    Google Scholar 

  19. Park, S., Yoo, J.H.: Human segmentation based on GrabCut in real-time video sequences. ICCE 2014, 111–112 (2014)

    Google Scholar 

  20. Gao, Z., Shi, P., et al.: A mutual GrabCut method to solve co-segmentation. EURASIP J. Image Video Process. 2013(1), 1–11 (2013)

    Article  MathSciNet  Google Scholar 

  21. Hernandez-Vela, A., Reyes, M., et al.: Grabcut-based human segmentation in video sequences. Sensors 12(11), 15376–15393 (2012)

    Article  Google Scholar 

  22. Li, J.G., Li, X.N., et al.: Application of GrabCut in human serially sectioned image segmentation. Comput. Technol. Develop. 21(12), 246–249 (2011)

    Google Scholar 

  23. Meyer, G.P., Do, M.N.: 3D GrabCut: interactive foreground extraction for reconstructed 3D scenes. In: Eurographics Workshop on 3D Object Retrieval 2015, pp. 1–6. Eurographics Association (2015)

    Google Scholar 

  24. Ramirez, J., Temoche, P., Carmona, R.: A volume segmentation approach based on GrabCut. CLEI Electron. J. 16(2), 4–4 (2013)

    Google Scholar 

  25. Piekos, T.: Confidence connected segmentation using ITK. Insight J. 2007 (2007)

    Google Scholar 

  26. Mortensen, E.N., Barrett, W.A.: Intelligent scissors for image composition. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 191–198. ACM (1995)

    Google Scholar 

  27. Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive image segmentation using an adaptive GMMRF model. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 428–441. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24670-1_33

    Chapter  Google Scholar 

Download references

Acknowledgment

This work is supported by grants from National Natural Science Foundation of China (Grant No. 81501463), Guangdong Innovative Research Team Program (Grant No. 2011S013), National 863 Programs of China (Grant No. 2015AA043203), Shenzhen Fundamental Research Program (Grant Nos. JCYJ20140417113430726, JCYJ20140417113430665 and JCYJ201500731154850923) and Beijing Center for Mathematics and Information Interdisciplinary Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaode Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ji, Z., Yu, S., Wu, S., Xie, Y., Yang, F. (2016). Improved GrabCut for Human Brain Computerized Tomography Image Segmentation. In: Yin, X., Geller, J., Li, Y., Zhou, R., Wang, H., Zhang, Y. (eds) Health Information Science. HIS 2016. Lecture Notes in Computer Science(), vol 10038. Springer, Cham. https://doi.org/10.1007/978-3-319-48335-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48335-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48334-4

  • Online ISBN: 978-3-319-48335-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics