Skip to main content

Machine-Learning-Based Visual Objects’ Distances Evaluation: A Comparison of ANFIS, MLP, SVR and Bilinear Interpolation Models

  • Conference paper
  • First Online:
Computational Intelligence (IJCCI 2015)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 669))

Included in the following conference series:

  • 747 Accesses

Abstract

Spatial characterization of objects is a key-step for robots’ awareness about the surrounding environment in which they are supposed to evolve and for their autonomy within that environment. Within this context, this chapter deals with visual evaluation of objects’ distances using Soft-Computing based approaches and pseudo-3D standard low-cost sensor, namely the Kinect. However, although presenting appealing advantages for indoor environment’s perception, the Kinect has not been designed for metrological aims. The investigated approach offers the possibility to use this low-cost pseudo-3D sensor for the aforementioned purpose by avoiding 3D feature extraction and thus exploiting the simplicity of the only 2D image’ processing. Experimental results show the viability of the proposed approach and provide comparison between different Machine-Learning techniques as Adaptive-network-based fuzzy inference (ANFIS), Multi-layer Perceptron (MLP), Support vector regression (SVR) and Bilinear Interpolation (BLI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hoffmann, J., Jüngel, M., Lötzsch, M.: A vision based system for goal-directed obstacle avoidance. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS, vol. 3276, pp. 418–425. Springer, Heidelberg (2005). doi:10.1007/978-3-540-32256-6_35

    Chapter  Google Scholar 

  2. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  3. Kinect camera. http://www.xbox.com/en-US/kinect/default.htm

  4. Borenstein, G.: Making Things See: 3D Vision with Kinect, Processing, Arduino, and MakerBot. O’Reilly Media Inc., Sebastopol (2012)

    Google Scholar 

  5. Zhang, Z.: Microsoft Kinect sensor and its effect. IEEE Multimedia Mag. 19(2), 4–10 (2012)

    Google Scholar 

  6. Meister, S., Izadi, S., Kohli, P., Haemmerle, M., Rother, C., Kondermann, D.: When can we use Kinect Fusion for ground truth acquisition? In: Proceedings of Workshop Color-Depth Camera Fusion Robot (2012)

    Google Scholar 

  7. Roth, H., Vona, M.: Moving volume Kinect Fusion. In: Proceedings of British Machinery Vision Conference, pp. 1–11 (2012)

    Google Scholar 

  8. Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., McDonald, J.: Kintinuous: spatially extended Kinect Fusion. In: RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras, no. 4 (2012)

    Google Scholar 

  9. Han, J., Shao, L., Xu, D., Shotton, J.: Enhanced computer vision with microsoft kinect sensor: a review. IEEE Trans. Cybern. 43(5), 1318–1334 (2013)

    Article  Google Scholar 

  10. Fraihat, H., Sabourin, C., Madani, K.: Soft-computing based fast visual objects’ distance evaluation for robots’ vision. In: Proceedings of the 8th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems, (IEEE/IDAACS 2015), Warsaw, Poland, 24–26 September, vol. 1, pp. 81–86 (2015)

    Google Scholar 

  11. Fraihat, H., Sabourin, C., Madani, K.: Learning-based distance evaluation in robot vision: a comparison of ANFIS, MLP, SVR and bilinear interpolation models. In: Proceedings of the International Conference on Neural Computation Theory and Applications (NCTA 2015), Lisbon, Portugal, 12–14 November, pp. 168–173 (2015)

    Google Scholar 

  12. Moreno, R., Ramik, D.M., Graña, M., Madani, K.: Image segmentation on the spherical coordinate representation of the RGB color space. IET Image Procession J. 6(9), 1275–1283 (2012)

    Google Scholar 

  13. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 142–149 (2000)

    Google Scholar 

  14. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2000)

    Google Scholar 

  15. Kheng, L.W.: Mean shift tracking, Technical report, National University of Singapore (2011). www.comp.nus.edu.sg/~cs6240/lecture/particle.pdf

  16. Jang, J.R.: ANFIS: Adaptive-Network-based Fussy Inference System. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)

    Article  Google Scholar 

  17. Jang, J.R., Sun, C-T.: Neuro-fuzzy modeling and control. In: Proceedings of the IEEE, vol. 83, no. 3, pp. 378–406 (1995)

    Google Scholar 

  18. Jang, J.R., Sun, C.-T., Mizutani, E.: Neuro-fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, Upper Saddle River (1997). ISBN 978-0132610667

    Google Scholar 

  19. Rumelhart, D., Hinton, G., Williams, R.: Learning internal representations by error propagation. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge (1986)

    Google Scholar 

  20. Lippman, R.P.: An introduction to computing with neural nets. IEEE ASSP Mag. 4(2) 4–22 (1987)

    Google Scholar 

  21. Smola, A.J., Scholkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Google Scholar 

  22. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000). ISBN 0521-78019-5

    Google Scholar 

  23. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). Kluwer Academic Publishers

    Google Scholar 

  24. Cok, D.R.: Signal Processing Method and Apparatus for Producing Interpolated Chrominance Values in a Sampled Color Image Signal, US Patent 4,642,678, (1987)

    Google Scholar 

  25. Intel, Using MMX™ Instructions to Implement Bilinear Interpolation of Video RGB Values (1996). https://software.intel.com/sites/landingpage/legacy/mmx/MMX_App_Bilinear_Interpolation_RGB.pdf

  26. Lu, G.Y., Wong, D.W.: An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 34(9), 1044–1055 (2008)

    Google Scholar 

  27. Chen, D., Ou, T., Gong, L.: Spatial interpolation of daily precipitation in China: 1951–2005. Adv. Atmos. Sci. 27(6), 1221–1232 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurosh Madani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Madani, K., Fraihat, H., Sabourin, C. (2017). Machine-Learning-Based Visual Objects’ Distances Evaluation: A Comparison of ANFIS, MLP, SVR and Bilinear Interpolation Models. In: Merelo, J.J., et al. Computational Intelligence. IJCCI 2015. Studies in Computational Intelligence, vol 669. Springer, Cham. https://doi.org/10.1007/978-3-319-48506-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48506-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48504-1

  • Online ISBN: 978-3-319-48506-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics