Skip to main content

Distance Geometry on the Sphere

  • Conference paper
  • First Online:
Discrete and Computational Geometry and Graphs (JCDCGG 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9943))

Included in the following conference series:

  • 819 Accesses

Abstract

The Distance Geometry Problem asks whether a given weighted graph has a realization in a target Euclidean space \(\mathbb {R}^K\) which ensures that the Euclidean distance between two realized vertices incident to a same edge is equal to the given edge weight. In this paper we look at the setting where the target space is the surface of the sphere \(\mathbb {S}^{K-1}\). We show that the Distance Geometry Problem is almost the same in this setting, as long as the distances are Euclidean. We then generalize a theorem of Gödel about the case where the distances are spherical geodesics, and discuss a method for realizing cliques geodesically on a K-dimensional sphere.

L. Liberti—Partly supported by the French national research agency ANR under the “Bip:Bip” project under contract ANR-10-BINF-0003.

C. Lavor—The support of FAPESP and CNPq is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrafiotis, D., Bandyopadhyay, D., Young, E.: Stochastic proximity embedding (SPE): a simple, fast and scalable algorithm for solving the distance geometry problem. In: Mucherino et al. (eds.) [22]

    Google Scholar 

  2. Cayley, A.: A theorem in the geometry of position. Camb. Math. J. II, 267–271 (1841)

    Google Scholar 

  3. Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data. J. Global Optim. 26, 321–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eren, T., Goldenberg, D., Whiteley, W., Yang, Y., Morse, A., Anderson, B., Belhumeur, P.: Rigidity, computation, and randomization in network localization. In: IEEE Infocom Proceedings, pp. 2673–2684 (2004)

    Google Scholar 

  5. Feferman, S., Dawson, J., Kleene, S., Moore, G., Solovay, R., van Heijenoort, J. (eds.): Kurt Gödel: Collected Works, vol. I. Oxford University Press, Oxford (1986)

    Google Scholar 

  6. Gödel, K.: On the isometric embeddability of quadruples of points of \(r_3\) in the surface of a sphere (1933b). In: Feferman et al. (eds.) [6], pp. 276–279

    Google Scholar 

  7. Krislock, N., Wolkowicz, H.: Explicit sensor network localization using semidefinite representations and facial reductions. SIAM J. Optim. 20, 2679–2708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lavor, C., Lee, J., Lee-St. John, A., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization orders for distance geometry problems. Optim. Lett. 6, 783–796 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52, 115–146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the discretizable molecular distance geometry problem. Eur. J. Oper. Res. 219, 698–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liberti, L., Lavor, C., Alencar, J., Abud, G.: Counting the number of solutions of \(^\mathit{k}\)DMDGP instances. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 224–230. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liberti, L., Lavor, C., Maculan, N., Marinelli, F.: Double variable neighbourhood search with smoothing for the molecular distance geometry problem. J. Global Optim. 43, 207–218 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liberti, L., Lavor, C., Mucherino, A.: The discretizable molecular distance geometry problem seems easier on proteins. In: Mucherino et al. [22]

    Google Scholar 

  16. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liberti, L., Masson, B., Lavor, C., Lee, J., Mucherino, A.: On the number of realizations of certain Henneberg graphs arising in protein conformation. Discrete Appl. Math. 165, 213–232 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Menger, K.: New foundation of Euclidean geometry. Am. J. Math. 53(4), 721–745 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  19. Menger, K. (ed.): Ergebnisse eines Mathematischen Kolloquiums. Springer, Wien (1998)

    Google Scholar 

  20. Moré, J., Wu, Z.: Global continuation for distance geometry problems. SIAM J. Optim. 7(3), 814–846 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mucherino, A., Lavor, C., Liberti, L.: Exploiting symmetry properties of the discretizable molecular distance geometry problem. J. Bioinf. Comput. Biol. 10, 1242009(1–15) (2012)

    Google Scholar 

  22. Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.): Distance Geometry: Theory, Methods, and Applications. Springer, New York (2013)

    MATH  Google Scholar 

  23. Mucherino, A., Lavor, C., Liberti, L., Talbi, E.G.: A parallel version of the Branch & Prune algorithm for the molecular distance geometry problem. In: ACS/IEEE International Conference on Computer Systems and Applications (AICCSA10), pp. 1–6. IEEE, Hammamet (2010)

    Google Scholar 

  24. Saxe, J.: Embeddability of weighted graphs in \(k\)-space is strongly NP-hard. In: Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

    Google Scholar 

  25. van der Schans, M., Boer, A.: A heuristic for completing covariance and correlation matrices. Technical report 2013–01, ORTEC Finance (2013)

    Google Scholar 

  26. Tenenbaum, J., de Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2322 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Liberti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Liberti, L., Swirszcz, G., Lavor, C. (2016). Distance Geometry on the Sphere. In: Akiyama, J., Ito, H., Sakai, T., Uno, Y. (eds) Discrete and Computational Geometry and Graphs. JCDCGG 2015. Lecture Notes in Computer Science(), vol 9943. Springer, Cham. https://doi.org/10.1007/978-3-319-48532-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48532-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48531-7

  • Online ISBN: 978-3-319-48532-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics