Abstract
We prove that it is NP-hard to dissect one simple orthogonal polygon into another using a given number of pieces, as is approximating the fewest pieces to within a factor of \(1+1/1080-\varepsilon \).
P. Manurangsi—Part of this work was completed while the author was at Massachusetts Institute of Technology and Dropbox, Inc.
A. Yodpinyanee—Research supported by NSF grant CCF-1420692.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Given a 4-Partition instance \(A = \{a_1, \dots , a_n\}\), we can create a 5-Partition instance by setting \(A' = \{na_1, \dots , na_n, 1, \dots , 1\}\) where the number of 1s is n / 4.
- 2.
The best \(\varepsilon _{\mathrm {MPD}}\) we can achieve is \(1/1080 - \varepsilon \) for any \(\varepsilon \in (0, 1/1080)\).
- 3.
Because \(k = n\), \(a_1\) will remain attached to the bar, forcing it to be the first element rectangle placed in the first partition rectangle. Because the order of and within partitions does not matter, this constraint does not affect the 5-Partition simulation.
- 4.
- 5.
The best \(\alpha _{\mathrm {M5P}}\) we can achieve here is 216/215.
- 6.
Our reduction uses rational lengths, but the polygons can be scaled up to use integer lengths while still being of polynomial size.
References
Aloupis, G., Demaine, E.D., Demaine, M.L., Dujmović, V., Iacono, J.: Meshes preserving minimum feature size. In: Márquez, A., Ramos, P., Urrutia, J. (eds.) EGC 2011. LNCS, vol. 7579, pp. 258–273. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34191-5_25
Bolyai, F.: Tentamen juventutem studiosam in elementa matheseos purae, elementaris ac sublimioris, methodo intuitiva, evidentiaque huic propria, introducendi. Typis Collegii Refomatorum per Josephum et Simeonem Kali, Maros Vásárhely (1832–1833)
Bosboom, J., Demaine, E.D., Demaine, M.L., Lynch, J., Manurangsi, P., Rudoy, M., Yodpinyanee, A.: Dissection with the fewest pieces is hard, even to approximate. CoRR abs/1512.06706 (2015). http://arxiv.org/abs/1512.06706
Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 460–467. ACM, New York (1988). http://doi.acm.org/10.1145/62212.62257
Demaine, E.D., Demaine, M.L.: Jigsaw puzzles, edge matching, and polyomino packing: connections and complexity. Graphs Comb. 23(Suppl.), 195–208 (2007). Special issue on Computational Geometry and Graph Theory: The Akiyama-Chvatal Festschrift. Preliminary version presented at KyotoCGGT 2007
Dudeney, H.E.: Puzzles and prizes. Weekly Dispatch (1902), the puzzle appeared in the April 6 issue of this column. A discussion followed on April 20, and the solution appeared on May 4
Frederickson, G.N.: Dissections: Plane and Fancy. Cambridge University Press, Cambridge (1997)
Frederickson, G.N.: Hinged Dissections: Swinging & Twisting. Cambridge University Press, Cambridge (2002)
Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling under resource constraints. SIAM J. Comput. 4(4), 397–411 (1975)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)
Gerwien, P.: Zerschneidung jeder beliebigen Anzahl von gleichen geradlinigen Figuren in dieselben Stücke. Journal für die reine und angewandte Mathematik (Crelle’s Journal) 10, 228–234 (1833). Taf. III
Hazan, E., Safra, S., Schwartz, O.: On the hardness of approximating k-dimensional matching. Electronic Colloquium on Computational Complexity (ECCC) 10(020) (2003). http://eccc.hpi-web.de/eccc-reports/2003/TR03-020/index.html
Lowry, M.: Solution to question 269, [proposed] by Mr. W. Wallace. In: Leybourn, T. (ed.) Mathematical Repository Part 1, pp. 44–46. W. Glendinning, London (1814)
Wallace, W. (ed.): Elements of Geometry, 8th edn. Bell & Bradfute, Edinburgh (1831)
Acknowledgment
We thank Greg Frederickson for helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Bosboom, J. et al. (2016). Dissection with the Fewest Pieces is Hard, Even to Approximate. In: Akiyama, J., Ito, H., Sakai, T., Uno, Y. (eds) Discrete and Computational Geometry and Graphs. JCDCGG 2015. Lecture Notes in Computer Science(), vol 9943. Springer, Cham. https://doi.org/10.1007/978-3-319-48532-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-48532-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48531-7
Online ISBN: 978-3-319-48532-4
eBook Packages: Computer ScienceComputer Science (R0)