Skip to main content

Bandwidth Forecasting for Power Communication Using Adaptive Extreme Learning Machine

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10040))

Included in the following conference series:

Abstract

Bandwidth demand forecasting is the basis and foundation of the power communication network planning. In view of the traditional neural network learning speed is slow, the number of iterations is large, and the local optimal problem, an adaptive extreme learning machine model based on the theory of extreme learning machine and K nearest neighbor theory is proposed to predict the bandwidth of electric power communication. The adaptive metrics of inputs can solve the problems of amplitude changing and trend determination, and reduce the effect of the overfitting of networks. The proposed algorithms are validated using real data of a province in China. The results show that this method is better than the traditional neural network, auto regressive model, self organization model, and single extreme learning machine model. It can be used in electric power communication bandwidth prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain, M., Dovrolis, C.: End-to-end estimation of the available bandwidth variation range. ACM Sigmetrics Perform. Eval. Rev. 33(1), 265–276 (2005)

    Article  Google Scholar 

  2. Dovrolis, C., Ramanathan, P., Moore, D.: Packet-dispersion techniques and a capacity-estimation methodology. IEEE/ACM Trans. Netw. 12(6), 963–977 (2004)

    Article  Google Scholar 

  3. Liu, X., Ravindran, K., Loguinov, D.: A stochastic foundation of available bandwidth estimation: multi-hop analysis. IEEE/ACM Trans. Netw. 16(1), 130–143 (2008)

    Article  Google Scholar 

  4. Nam, S.Y., Kim, S., Kim, J., et al.: Probing-based estimation of end-to-end available bandwidth. IEEE Commun. Lett. 8(6), 400–402 (2004)

    Article  Google Scholar 

  5. Park, K.J., Lim, H., Choi, C.H.: Stochastic analysis of packet-pair probing for network bandwidth estimation. Comput. Netw. Int. J. Comput. Telecommun. Netw. 50(12), 1901–1915 (2006)

    MATH  Google Scholar 

  6. Zhang, M., Luo, C., Li, J.: Estimating available bandwidth using multiple overloading streams. Int. Conf. IEEE 2, 495–502 (2006)

    Google Scholar 

  7. Liu, J., Zhang, D.: Toward accurate and efficient available bandwidth measurement. Telecommun. Syst. 41(3), 211–227 (2009)

    Article  Google Scholar 

  8. Li, M., Chang, C.R.: A two-way available bandwidth estimation scheme for multimedia streaming networks adopting scalable video coding. IEEE Sarnoff Symp. 1, 1–6 (2009)

    Google Scholar 

  9. Guerrero, C.D., Labrador, M.A.: Traceband: “A fast, low overhead and accurate tool for available bandwidth estimation and monitoring”. Comput. Netw. 54(6), 977–990 (2010)

    Article  MATH  Google Scholar 

  10. Guerrero, C.D., Labrador, M.A.: On the applicability of available bandwidth estimation techniques and tools. Comput. Commun. 33(1), 11–22 (2010)

    Article  Google Scholar 

  11. Dolama, M.V., Rahbar, A.G.: Modified smallest available report first: new dynamic bandwidth allocation schemes in QoS-capable EPONs. Opt. Fiber Technol. 17(1), 7–16 (2011)

    Article  Google Scholar 

  12. Huang, S.C.: Online option price forecasting by using unscented kalman filters and support vector machines. Expert Syst. Appl. 43(4), 2819–2825 (2008)

    Article  Google Scholar 

  13. Funahashi, K.I.: On the approximate realization of continuous mappings by neural networks. Neural Netw. 2(3), 183–192 (1989)

    Article  Google Scholar 

  14. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Sig. Syst. 2(4), 303–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, G.B.: Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 14(2), 274–281 (2003)

    Article  Google Scholar 

  16. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Article  Google Scholar 

  17. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  18. Zhu, Q.Y., Qin, A.K., Suganthan, P.N., et al.: Evolutionary extreme learning machine. Pattern Recogn. 38(10), 1759–1763 (2005)

    Article  MATH  Google Scholar 

  19. Bartlett, P.L.: For valid generalization, the size of the weights is more important than the size. Adv. Neural Inf. Process. Syst. (NIPS) 9, 134 (1997)

    Google Scholar 

  20. Wong, W.K., Xia, M., Chu, W.C.: Adaptive neural network model for time-series forecasting. Eur. J. Oper. Res. 207(1), 807–816 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported in part by, the National Natural Science Foundation of PR China (61105115), Six Talent Peaks Program of Jiangsu Province (2014-XXRJ-007), Natural Science Foundation of Jiangsu Province (BK20161533), Perspective Research Foundation of Production Study and Research Alliance of Jiangsu Province (BY2015007-01), and Laboratory open project of Nuist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Zheng, Z., Di, L., Wang, S., Xia, M., Hu, K., Zhang, R. (2016). Bandwidth Forecasting for Power Communication Using Adaptive Extreme Learning Machine. In: Sun, X., Liu, A., Chao, HC., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2016. Lecture Notes in Computer Science(), vol 10040. Springer, Cham. https://doi.org/10.1007/978-3-319-48674-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48674-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48673-4

  • Online ISBN: 978-3-319-48674-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics