Skip to main content

A Bayesian Approach to Linear Unmixing in the Presence of Highly Mixed Spectra

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10016))

  • 7608 Accesses

Abstract

In this article, we present a Bayesian algorithm for endmember extraction and abundance estimation in situations where prior information is available for the abundances. The algorithm is considered within the framework of the linear mixing model. The novelty of this work lies in the introduction of bound parameters which allow us to introduce prior information on the abundances. The estimation of these bound parameters is performed using a simulated annealing algorithm. The algorithm is illustrated by simulations conducted on synthetic AVIRIS spectra and on the SAMSON dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., Chanussot, J.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 5(2), 354–379 (2012)

    Article  Google Scholar 

  2. Boardman, J.W., Kruse, F.A., Green, R.O.: Mapping target signatures via partial unmixing of AVIRIS data (1995)

    Google Scholar 

  3. Winter, M.E.: N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. In: SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics (1999)

    Google Scholar 

  4. Nascimento, J.M.P., Bioucas Dias, J.M.: Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(4), 898–910 (2005)

    Article  Google Scholar 

  5. Chang, C.-I., et al.: A new growing method for simplex-based endmember extraction algorithm. IEEE Trans. Geosci. Remote Sens. 44(10), 2804–2819 (2006)

    Article  Google Scholar 

  6. Dobigeon, N., et al.: Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery. IEEE Trans. Sig. Proc. 57(11), 4355–4368 (2009)

    Article  MathSciNet  Google Scholar 

  7. Thouvenin, P.-A., Dobigeon, N., Tourneret, J.-Y.: Hyperspectral unmixing with spectral variability using a perturbed linear mixing model. IEEE Trans. Sig. Proc. 64(2), 525–538 (2016)

    Article  MathSciNet  Google Scholar 

  8. Halimi, A., Dobigeon, N., Tourneret, J.-Y.: Unsupervised unmixing of hyperspectral images accounting for endmember variability. IEEE Trans. Image Proc. 24(12), 4904–4917 (2015)

    Article  MathSciNet  Google Scholar 

  9. Zare, A., Ho, K.C.: Endmember variability in hyperspectral analysis: addressing spectral variability during spectral unmixing. IEEE Sig. Proc. Mag. 31(1), 95–104 (2014)

    Article  Google Scholar 

  10. Somers, B., et al.: Endmember variability in spectral mixture analysis: a review. Remote Sens. Environ. 115(7), 1603–1616 (2011)

    Article  Google Scholar 

  11. Robert, C., George, C.: Monte Carlo statistical methods. Springer Science and Business Media, New York (2013)

    MATH  Google Scholar 

  12. Andrieu, C., et al.: An introduction to MCMC for machine learning. Mach. Learn. 50(1–2), 5–43 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feiyn, Z., et al.: Structured sparse method for hyperspectral unmixing. ISPRS J. Photogrammetry Remote Sens. 88, 101–118 (2014)

    Article  Google Scholar 

  14. Moussaoui, S., et al.: On the decomposition of Mars hyperspectral data by ICA and Bayesian positive source separation. Neurocomputing 71(10), 2194–2208 (2008)

    Article  Google Scholar 

  15. Mohan, A., Sapiro, G., Bosch, E.: Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 4(2), 206–210 (2007)

    Article  Google Scholar 

  16. Castrodad, A., et al.: Learning discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 49(11), 4263–4281 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the European Commission project M3S (Molecular Signature Detection with Multi-modal Microscopy Scanner) under the ICT PSP Call (Contract no. 621152). The authors would like to thank MEDyC team from Reims University for providing Raman spectra used in the experimental part. Special thanks also go to Jacques Klossa (TRIBVN) for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Figliuzzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Figliuzzi, B., Velasco-Forero, S., Bilodeau, M., Angulo, J. (2016). A Bayesian Approach to Linear Unmixing in the Presence of Highly Mixed Spectra. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2016. Lecture Notes in Computer Science(), vol 10016. Springer, Cham. https://doi.org/10.1007/978-3-319-48680-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48680-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48679-6

  • Online ISBN: 978-3-319-48680-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics