Abstract
The paper exploits the problem of empty vs. non-empty parking lots classification from images acquired by public cameras through the comparison between a classic supervised learning method and a semi-supervised learning one. Both approaches are based on convolutional neural networks paradigm. Experimental results point out that the supervised method outperforms the semi-supervised approach already when few samples are used for training.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
de Almeida, P.R., Oliveira, L.S., Britto, A.S., Silva, E.J., Koerich, A.L.: PKLot-a robust dataset for parking Lot classification. Expert Syst. Appl. 42(11), 4937–4949 (2015)
Battiato, S., Farinella, G.M., Furnari, A., Puglisi, G., Snijders, A., Spiekstra, J.: An integrated system for vehicle tracking and classification. Expert Syst. Appl. 42(21), 7263–7275 (2015)
Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J.R., Mellouli, S., Nahon, K., Pardo, T.A., Scholl, H.J.: Understanding smart cities: an integrative framework. In: 2012 45th Hawaii International Conference on System Science (HICSS), pp. 2289–2297. IEEE (2012)
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Lee, D.H.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3 (2013)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008. LNCS, vol. 5099, pp. 236–243. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69905-7_27
Shapiro, J.M.: Smart cities: quality of life, productivity, and the growth effects of human capital. Rev. Econ. Stat. 88(2), 324–335 (2006)
Wu, Q., Zhang, Y.: Parking Lots Space Detection. Machine Learning, Fall (2006)
Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 3(1), 1–130 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Di Mauro, D., Battiato, S., Patanè, G., Leotta, M., Maio, D., Farinella, G.M. (2016). Learning Approaches for Parking Lots Classification. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2016. Lecture Notes in Computer Science(), vol 10016. Springer, Cham. https://doi.org/10.1007/978-3-319-48680-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-48680-2_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48679-6
Online ISBN: 978-3-319-48680-2
eBook Packages: Computer ScienceComputer Science (R0)