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Abstract. According to the predictive results of query performance,
queries can be rewritten to reduce time cost or rescheduled to the time
when the resource is not in contention. As more large RDF datasets
appear on the Web recently, predicting performance of SPARQL query
processing is one major challenge in managing a large RDF dataset ef-
ficiently. In this paper, we focus on representing SPARQL queries with
feature vectors and using these feature vectors to train predictive models
that are used to predict the performance of SPARQL queries. The eval-
uations performed on real world SPARQL queries demonstrate that the
proposed approach can effectively predict SPARQL query performance
and outperforms state-of-the-art approaches.

Keywords: SPARQL, Feature Modeling, Prediction

1 Introduction

The Semantic Web, with its underlying data model RDF and its query lan-
guage SPARQL, has received increasing attention from researchers and data
consumers in both academia and industry. RDF essentially represents data as
a set of three-attribute tuples, i.e., triples. The attributes are subject, predicate
and object, where predicate is the relationship between subject and object. Over
the recent years, RDF has been increasingly used as a general data model for
conceptual description and information modeling. Since the number of publicly
available RDF datasets and their volume grow dramatically, it becomes essential
to provide efficient querying of large scale RDF datasets. This is an important is-
sue in the sense that whether to obtain knowledge efficiently affects the adoption
of RDF data as well as the underlying Semantic Web technologies.

Substantial works focus on the prediction of query performance (e.g., execu-
tion time) [16,9, 1]. Prediction of query execution performance can benefit many
system management decisions, including workload management, query schedul-
ing, system sizing and capacity planning. Studies show that cost model based
query optimizers are insufficient for query performance prediction [2,6]. There-
fore, approaches that exploit the machine learning techniques to build predictive
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models have been proposed [2, 6]. These approaches treat the database system
as a black box and focus on learning a query performance predictive model,
which are evaluated as feasible and effective [2]. These works extract the fea-
tures of queries by exploring the query plan which can provide estimations such
as execution time, row count and these two estimations for each operator.

However very few efforts have been made to predict the performance of
SPARQL queries. SPARQL query engines can be grouped into two categories:
RDBMS-based triple stores and RDF native triple stores. RDBMS-based triple
stores rely on optimization techniques provided by relational databases. How-
ever, due to the absence of schematic structure in RDF, cost-based approaches
show problematic query estimation and cannot effectively predict the query per-
formance [15]. RDF native query engines typically use heuristics and statistics
about the data for selecting efficient query execution plans [14]. Heuristics and
statistics based optimization techniques generally work without any knowledge
of the underlying data, but in many cases, statistics are often missing [15]. Has-
san [8] proposes the first work on predicting SPARQL query execution time
by utilizing machine learning techniques. The key contribution of the work is
to model a SPARQL query to a feature vector, which can be used in machine
learning algorithms. However, in practice, we observe that modeling approach
is very time consuming. To address this issue, we leverage both syntactical and
structural information of the graph-based SPARQL queries and propose to use
the hybrid features to represent a SPARQL query. Specifically, we transform the
algebra and BGPs of a SPARQL query into two feature vectors respectively and
perform a feature selection process based on heuristic to build hybrid features
from these two feature vectors. Our approach reduces the computation time of
feature modeling in orders of magnitude. Once the features are built, we use
machine learning algorithms to train the prediction model. The input of the al-
gorithm is the feature matrix of the training queries (we concatenate the feature
vectors of individual queries into a matrix) and the query performance of these
queries (here we only consider the elapsed time used to perform a query and
get the result). The output is the trained prediction model. When a new query
q is issued, we obtain its feature vector using our feature modeling approach.
Then we use the trained prediction model to predict the performance of q. K-
Nearest-Neighbor (KNN) regression and Support Vector Regression (SVR) are
both considered as the predictive model. We develop a two-step prediction pro-
cess to improve the prediction result compared to one-step prediction.Moreover,
we evaluate our approach on both cold (i.e., fresh queries) and warm (i.e., re-
peated queries) stages of the system. In cold stage, elapsed time consists of both
compile and execution time while in warm stage, elapsed time equals to the exe-
cution time. The reason we can ignore the compile time is because our work only
considers static querying data. Thus a repeated query has the same execution
plan each time it is issued and the system only compiles once. The consideration
of cold stage is useful as the knowing of execution performance for unseen queries
is more important for system management than to previously seen queries.
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Our approach can be applied in the situation that no estimation of query ex-
ecution performance are provided, or such estimations are implicit or inaccurate.
In practice, this applies to most triple stores that are publicly accessible. More-
over, no domain expertise is required. All the methods are easy to reproduce as
we choose the most commonly used algorithms in the the machine learning field.
In a nutshell, the main contributions of this work are summarized as follows:

— We adopt machine learning techniques to predict the SPARQL query perfor-
mance before their execution. We transform the SPARQL queries to feature
vectors that is required by the machine learning algorithms. Hybrid feature
modeling is proposed based on the features that can be obtained without
the information of the underlying systems.

— We consider both warm and cold stage prediction, and the latter one has
not been discussed in the state-of-the-art works, but is important to the
examination of execution performance of a query.

— We perform extensive experiments on real-world queries obtained from widely
accessed SPARQL endpoints. The triple store we used is one of the most
widely used systems in the Semantic Web community. Thus our work can
benefit a large population of users. Moreover, our approach is system inde-
pendent that can be applied to other triple stores.

The remainder of this paper is structured as follows. Existing research efforts
on the related topics are discussed in Section 2. In Section 3, the background
knowledge is briefly introduced. Section 4 describes our prediction approaches
in detail. Section 5 reports the experimental results. Finally, we discuss some
issues we observed and conclude the paper in Section 6.

2 Related Work

There are very limited previous works that pertain to predicting query perfor-
mance via machine learning algorithms in the context of SPARQL queries. We
introduce here the works of predicting SQL queries performances that we draw
ideas from and discuss the work in [8].

Akdere et al. [2] propose to predict the execution time using Support Vec-
tor Machine (SVM). They build predictors by leveraging query plans provided
by the PostgreSQL optimizer. The authors also choose operator-level predictors
and then combine the two with heuristic techniques. The work studies the ef-
fectiveness of machine learning techniques for predicting query latency of both
static and dynamic workload scenarios. Ganapathi et al. [6] consider the prob-
lem of predicting multiple performance metrics at the same time. The authors
also choose query plan to build the feature matrix. Kernel Canonical Correla-
tion Analysis (KCCA) is leveraged to build the predictive model as it is able to
correlate two high-dimension datasets. As addressed by the authors, it is hard
to find a reverse mapping from feature space back to the input space and they
consider the performance metric of KNN to estimate the performance of target
query. Hassan [8] proposes the first work on predicting SPARQL query execution
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time by utilizing machine learning techniques. In the work, multiple regression
using SVR is adopted. The evaluation is performed using benchmark queries on
an open source triple store Jena TDB®. The feature models are extracted based
on Graph Edit Distances (GED) between each of training queries. However, in
practice, we observe that the calculation of GED is very time consuming, which
is not a desirable method when the training dataset is large. Our work draws
idea from this work and improves it by largely reducing the computation time.

3 Preliminaries

3.1 SPARQL Query

A SPARQL query can be represented as a graph structure, the SPARQL graph
[7]. Given the notation B, I, L, V for the (infinite) sets of blank nodes, IRIs,
literals, and variables respectively, a SPARQL graph pattern expression is defined
recursively (bottom-up) as follows [11]:

(i) A valid triple pattern T € (IVB) x (IV) x (IVLB) is a basic graph pat-
tern (BGP), where a triple pattern is the triple that any of its attributes is
replaced by a variable.

(ii) For BGP; and BGP;, the conjunction (BGP; and BGP;) is a BGP. A BGP
is a graph pattern.

(iii) If P; and P; are graph patterns, then (P, AND P;), (P, UNION P;) and (P;
OPTIONAL P;) are graph patterns.

(iv) If P; is a graph pattern and R; is a SPARQL build-in condition, then the
expression (P; FILTER R;) is a graph pattern.

3.2 Multiple Regression

Multiple Regression focuses on finding the relationship between a dependent
variable and multiple independent variables (i.e., predictors). It estimates the
expectation of the dependent variable given the predictors. Given a training
set (Xi,¥i),% = 1,...n, where x; € R™ is a m-dimensional feature vector (i.e., m
predictors), the objective of multiple regression is to discover a function y;=f(x;)
that best predicts the value of y; associated with each x; [12].

Support Vector Regression is to find the best regression function by selecting the
particular hyperplane that maximizes the margin, i.e., the distance between the
hyperplane and the nearest point [13] . The error is defined to be zero when
the difference between actual and predicted values are within a certain amount
£. The problem is formulated as an optimization problem:

minw?w, st yi(wix;+b)>1—-£E6>0 (1)

® https://jena.apache.org/documentation /tdb/
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Fig. 1. Steps for Query Performance Prediction

where parameter ||Tbn determines the offset of the hyperplane from the origin
along the normal vector w. If we extend the dot product of x; - x; to a different
space of larger dimensions through a functional mapping ©(x;), then SVR can
be used in non-linear regression. O(x;) - ©(x;) is called kernel function. An
advantage of SVR is its insensitivity to outliers [17].

K-Nearest Neighbours is a non-parametric classification and regression method
[3]. The KNN regression predicts based on K nearest training data. It is often
successful in the cases where the decision boundary is irregular, which applies
to SPARQL queries [8]. By training the KNN model, the predicted query time
can be calculated by the average time of its K nearest neighbours.

k
> () @

where t; is the elapsed time of the i** nearest query.

tg =

| =

4 SPARQL Query Performance Prediction

Our prediction process consists of four main phases, namely Data Pre-Processing,
Feature Modeling, Predictive Model Training and Prediction (one-step and two-
step) (Figure 1). Both training and new requested queries are cleaned in the
Data Pre-Processing phase, valid queries are extracted during this phase. In
the Feature Modeling phase, queries are represented as a set of features. In the
Predictive Model Training phase, predictive models are derived from the train-
ing queries with observed query performance metrics. In the Prediction phase,
trained predictive models are used to predict the performance of a new issued
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SELECT * WHERE {
{ 2city rdfs:label 'Evry'@en.}
UNION { ?alias dbpedia2:redirect ?city;
rdfs:label 'Evry'@en. }
OPTIONAL { ?city dbp:abstract ?abstract}
FILTER (langMatches( lang(?abstract), ‘en’))}

Y

|
filter (langMatches (Iiang ?var2) "en"

left join
1
r
union ‘

S —
bgp bgp bgp
2city ?alias 2city
rdfs:la bel dbpedia2:redirect dbp:abstrac
‘Evry@en  city . t 2abstract

?alias =
rdfs:label
‘Evry'@en '
height| left join | union bgp [..]
3 [l IiEEE] -

The occurrence | [Max height in H Min height in ‘
count of operator | |the algebra tree|| the algebra tree

Fig. 2. Algebra Feature Modelling on Example Query

query. Compare to one-step prediction, the two-step prediction has labeling be-
fore predictive model training and classification step before prediction. We focus
on discussion of feature modeling in Section 4.1 and describe the predictive mod-
els training and two-step prediction in Section 4.2. We ignore the description of
data pre-processing due to the space constraint.

4.1 Feature Modeling

In order to utilize machine learning algorithms for SPARQL query performance
prediction, we transform the SPARQL query into vector representation where
each value in a vector is regarded as a feature instance of a query. The perfor-
mance of prediction highly depends on how much information the features can
represent the data. In this study, we use only static, compile time features that
are extracted prior to execution. The algebra and BGP features are obtained by
parsing the query text (Section 4.1.1 and 4.1.2). The hybrid features are gener-
ated by applying a selection algorithm on the algebra and BGP features (Section
4.1.3). We concatenate the feature vectors of a set of training queries and form
a feature matrix as the input of learning algorithms.

4.1.1 Algebra Feature The algebra of a SPARQL query can be presented
as a tree where the leaves are BGPs and nodes are operators presented hierar-
chically. The parent of each node is the parent operator of current operator. We
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Fig. 3. Example Triple Patterns

traverse the tree to construct a set of tuples {(opt;, ¢;, maxh;, minh;)}, where
opt; is the operator name, ¢; is the occurrence count of opt; in the algebra tree,
mazh; and and minh; are opt;’s maximum height and minimum height in the
algebra tree, respectively. We then concatenate all the tuples sequentially to
form a vector. We further insert the tree’s height at the beginning of the vector.
Figure 2 illustrates an example of algebra feature modelling.

4.1.2 BGP Feature Algebra features takes occurrences and some hierarchi-
cal information of operators into consideration, but fails to represent BGPs, the
most widely used subset of SPARQL queries [4]. To represent BGPs, we propose
to build BGP features. We examine that BGPs consist of sets of triple patterns
(Section 3) thus can also be represented as tree structure. But we choose not
to use similar transform approach (i.e., record occurrences and maximum/min-
imum heights) as in algebra feature modelling. Instead, we propose a new way
to transform BPGs to vector representation for comparison.

Specifically, we leverage the edit distance between graphs to build BGP fea-
tures because it can capture complete information of a BGP graph. Figure 3
illustrates the graph representation of two triple patterns (?s, p, o) and (%s, p,
?0) where the subject(s) and object(o) are nodes and predicate(p) are edges.
The question mark indicates that the corresponding component is a variable.
However, it is hard to tell the differences between the two graphs, as they are
structurally identical. To address this problem, we propose to map the 8 types
of triple patterns to 8 structurally different graphs, as shown in Figure 4(left).
The black circles are inner conjunction nodes. To exemplify, we model the triple
patterns of BGPs in the example query in Figure 2, to a graph, which is depicted
in Figure 4(right). The black rectangles are outer conjunction nodes.

’;9(%%{@(5%(517% -\
85 8508008 &

(s, ?p, 0) (?s, ?p, 0) (s, ?p, P0)  (?s, ?p, ?0) (?s,p,0) (?,p,?) (?,p0) (?,p ?)

Fig. 4. Mapping Triple Patterns to Graphs. Left: 8 types of triple patterns are mapped
to 8 structurally different graphs. Right: mapping example query in Figure 2 to a graph.
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We then calculate the Graph Edit Distance (GED)® between the graph of a
query ¢ and graphs of some representative queries and regard each distance as an
instance of a feature. Thus we obtain a n-dimensional feature vector for ¢, where
n is the number of representative queries. We choose to use the 18 valid out of
22 templates from DBPSB benchmark [10] to generate representative queries.
We build the graph for each of the 18 queries and record the GED between ¢
and these graphs. Thus we obtain a 18-dimension feature vector for q.

4.1.3 Hybrid Feature We build hybrid feature vector for ¢ by selecting the
most predictive features based on the algebra and BGP features. Most feature
selection approaches rank the candidate features (often based on their corre-
lations) and use this ranking to guide a heuristic search to identify the most
predictive features. In this paper, we use a similar forward feature selection al-
gorithm, but we choose the contribution to overall prediction performance as
the heuristic. The algorithm starts with building predictive model (we use KNN
as the predictive model here) using a small number of features and iteratively
build more complex and accurate model by using more features. In each iter-
ation, a new feature is tested and added to the feature set. If it improves the
overall prediction performance, the feature is selected. Otherwise, it is removed
from the feature set. Finally, we simply consider the completion of traversing
all features as the stopping condition. The output of the algorithm is the list of
selected features that form the feature vector for each query.

4.2 Prediction

We propose two prediction processes, namely one-step prediction and two-step
prediction. In the one-step prediction, feature vector of a new query is input into
the trained predictive model obtained in the predictive model training phase.
The output is the predicted value of the query performance metrics. The two-
step prediction differs with one-step prediction by adding classification step. We
present the predictive models used in this work in Section 4.2.1 and describe
how we do two-step prediction in Section 4.2.2.

4.2.1 Predictive Models We choose two regression approaches SVR and
KNN regression in this work (Section 3.2). The models are trained with the
actual query performance of training queries and then be used to estimate the
performance of a new issued query. Both models require the features vector-
represented. We compare several variations of these two models in this work.
The description is as follows.

6 Graph edit distance is the minimum amount of edit operations (i.e., deletion, inser-
tion and substitutions of nodes and edges) needed to transform one graph to the
other.
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SVR Four commonly used kernels are considered in our model: namely Linear,
Polynomial, Radial Basis and Sigmoid, with different kernel parameters v and
7

Linear: K (x;,X;) = X} x;
— Polynomial: K (x;,x;) = (x}x;)"
— Radial Basis: K(x;,x;) = exp(—||xi — x,||?),v > 0
Sigmoid: K (x;,x;) = tanh(yxFx;) +r

KNN We apply three variations of KNN regression by considering different
weighting methods to the neighbors.

— Awverage. We assign equal weights to each of the K nearest neighbors and get
the average of their elapsed time as the predicted time:

k
=F 2 (3)

where t; is the elapsed time of the i** nearest query.
— Power. The weights in Power is the power value of weighting scale . The
predicted query time is calculated as follows:

k
Za *1;) 4)

where o is the weight of the i*" nearest query.
— Ezponential. We apply an exponential decay function with decay scale 3 to
assign weights to neighbors with different distance.

k
Z 48y 1) (5)

where d; is the distance between target query and its i** nearest neighbor.

wIH

wl>—~

wIH

All the scaling parameters are chosen through 5-fold cross-validation.

4.2.2 Two-Step Prediction We observe that the one-step prediction, where
all the training data are fed into a single predictive model, gives undesirable
performance. A possible reason is the fact that our training dataset has queries
with various different elapsed time ranges. Fitting a curve for such irregular data
points is often inaccurate. Then we propose a two-step prediction process, where
we split queries according to their elapsed time and train different predictive
models. Specifically, we firstly put the training queries in four bins, namely short,
medium short, medium, and long. The time ranges in these four bins are <0.1
seconds, 0.1 to 10 seconds, 10 to 3,600 seconds, and > 3,600 seconds respectively.
We correspondingly label all the training queries with these four labels. Then we
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train four predictive models and one for each bin (or class). When a new query
q arrives, we perform classification for ¢ and obtain its label (or class). Here we
use Support Vector Machine (SVM) as classification algorithm as it is the mostly
used classification algorithm. Then we use the trained predictive model for the
class that ¢ is labelled to predict ¢’s performance.

5 Experiments

5.1 Setup

Data We used real world queries gathered from USEWOD challenge”, which
provides query logs from DBPedia’s SPARQL endpoint® (DBpedia3.9). We ran-
domly chose 10,000 valid queries in our prediction evaluation. Then these queries
were executed 11 times as suggested in [7], including the first time as cold stage,
and the remaining 10 times as the warm stage. Finally, we split the collection
to training and test sets according to the 4:1 tradition. We set up a local mirror
of DBpedia3.9 English dataset to execute the queries.

System The backing system of our local triple store is Virtuoso 7.2, installed on
64-bit Ubuntu 14.04 Linux operation system with 32GB RAM and 16 CPU. All
the machine learning algorithms are performed on a PC with 64-bit Windows 7,
8GB RAM and 2.40GHZ Intel i7-3630QM CPU.

Implementation We used SVR for kernel and linear regression available from
LIBSVM [5]. KNN and weighted KNN regression was designed and implemented
using Matlab. The algebra tree used for extracting algebra features was parsed
using Apache Jena-2.11.2 library, Java API. Graph edit distance was calculated
using the Graph Matching Toolkit®.

Evaluation Metric We followed the suggestion in [2] and used the mean relative
error as our prediction metric:

|actual; — estimate;]

N
) 1
relativeerror = N Z (6)

; actualmean
1=1

The difference with the calculation in [2] is that we divide actual,,eqn instead of
actual; because we observe there are zero values for actual;.

5.2 Models Comparison

We compared the Linear SVR and SVR with three kernels, namely Polynomial,
Radial Basis and Sigmoid with KNN when K=1. The feature model used in

" http://usewod.org/
8 http://dbpedia.org/sparql/
¥ http://www.fhnw.ch/wirtschaft /iwi/gmt
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Table 1. Relative Error of Elapsed Time Prediction (One-step)

Elapsed time (Cold)|Elapsed time (Warm)
SVR-Linear 99.69% 97.59%
SVR-Polynomial 99.46% 97.33%
SVR-RadialBasis 99.74% 97.86%
SVR-Sigmoid 99.68% 97.57%
KNN (K=1) 21.94% 20.89%

the experiments was the hybrid feature. Table 1 shows the performances of the
four models in one-step prediction. SVR models perform poorer than KNN.
We investigate this phenomenon and find two possible reasons. One is that the
elapsed time has a broad range and SVR considers all the data points in the
training set to fit the real value, whereas KNN only considers the points close
to the test point. The other reason is that we use mean of actual values in
Equation 6, and the values that are far from average will lead to distortion of
mean value. Given this result, we chose to use KNN model by default in the
following evaluations.

N
®
N
o

—*— Average
271| —e— Power
Exponential

—%— Average
—©— Power
Exponential

IN)
N

N
N

N
- O

Relative Error(%)
Relative Error(%)
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© o

i
=3
=
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K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=1 K=2 K=3 K=4 K=5 K=6 K=7
K of KNN K of KNN
(a) Cold (b) Warm

Fig. 5. Performance Comparison of Different Weighted KNN Model (One-step)

We evaluated three weighting schemes for KNN regression discussed in Sec-
tion 4.2.1, namely Average, Power and Ezponential. From Figure 5 we observe
that the power weighting gives the best performance. In the warm stage, the
15.32% relative error is achieved when K=5. The trend of relative error returns
to upward after K=5. Average weighting is the worst weighting method for our
data. Exponential weighting does not perform as well as we expected although it
is better than average weighting. Weighting schemes show similar performances
when the query execution is in the cold stage, i.e., when K=5, the power weight-
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ing achieves the lowest relative error of 18.29%. We therefore used K=5 power
weighting in following evaluations.

100

Il Algebra
90 [ IBGP
Il Hybrid

80

70

60 53.98%

51.87%

50

40

Relative Error(%)

80 25.76% 24.30%

H 21.94% H 20.89%

Cold Warm

=
o

0

Fig. 6. Feature Model Selection (One-step)

We also compared the three feature models: Algebra, BGP and Hybrid. Figure
6 shows the prediction performance of elapse time on both warm and cold stages.
The hybrid feature performs the best and the BGP feature performs better than
the algebra feature. Thus we chose hybrid features in following evaluations.

5.3 Performance of Two-Step Regression

We used SVM for the classification task and achieved accuracy of 98.36%, indi-
cating that we can accurately predict the time range. Table 2 shows the result
of two-step prediction comparison between KNN and SVR-Polynomial on both
warm and cold stage. It shows that SVR regression model still does not perform
desirably. It also shows the two-step prediction performs better than one-step
prediction. In Figure 7 we compare one-step and two-step prediction on elapsed
time in warm stage using log-log plotting.

Table 2. Relative Errors (%) of Two-Step Prediction with KNN and SVR. In the
parentheses are the values from one-step prediction

Predictive model|Elapsed Time (Cold)|Elapsed time (Warm)
5NN(a = 0.3) 11.06(21.94) 9.81(20.89)
SVR-Polynomial 22.39 20.30
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Fig. 7. Elapsed Time Prediction Fitting in Warm Stage(log-log)

5.4 Comparison to the State-of-the-Art

We compare the approach in the work [8] with our approach, as it is the only
work that exploits machine learning algorithms to predict SPARQL query. Table
3 shows the result of comparison on warm stage querying. The training time
includes feature modelling, clustering and classification for work in [8]. The first
part takes the most time because the calculation of GED for all training queries is
time-consuming. In our approach (Section 4.1.2), we reduce the GED calculation
drastically. But this calculation still takes most time in the prediction process.
The time gap of training process between ours and the approach in [8] will be
enlarged when more training queries are involved because their approach takes
squared time. We do not have clustering process, which further reduces the time
used. Our approach also shows better prediction performance with lower relative
error for the prediction metric.

Table 3. Comparison to the State-of-the-Art Work. Training time for 1000 queries
(Timelk) are compared as well as the relative errors for elapsed time.

Models Timelk |Relative Error
Ours|SVM+Weighted KNN| 51.36 sec 9.81%
[8] |X-means+SVM+SVR|[1548.45 sec|  14.39%

6 Discussions & Conclusion

In this section, we first discuss some observations and issues of this work. Then
we conclude this paper.
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Plan Features There are two obstacles for using query plan as features in our
work. Firstly, this information is based on the cost model estimation, which has
been proven as ineffective [2,6]. Secondly, most of the open source triple stores
fail to provide explicit query plans. Thus we turn to choose structure-based
features that can be obtained directly from query texts. From our practical
experience in this work, we observed that although it leads to distortion of the
prediction, the error rate is acceptable based on limited features we can acquire.

Training Size Larger size of the training data would lead to better prediction
performance. The reason is that more data variety is seen and the model will be
less sensitive to unforeseen queries. However, in practice, it is time consuming to
obtain the query elapsed time of a large collection of queries. That is the possible
reason why many other works only use small size of queries in their evaluation.
This fact will cause the bias of the prediction result and makes similar works
hard to compare. Although our experimental query set is larger than theirs, we
will consider to further enlarge the size of our query set to cover more various
queries in the future.

Dynamic vs Static Data In dynamic query workloads, the queried data is up-
dated. Therefore, the prediction might perform poorly due to lack of update of
the training data. Our work focuses on prediction on static data and we expect
training to be done in a periodical manner. In the future we plan to investigate
the techniques to make prediction more available for continuous retraining which
reflects recently executed queries.

To conclude, in this paper, we build feature vectors for SPARQL queries by
exploiting the syntactic and structural characteristics of the queries. We observe
that KNN performs better than SVR on predicting the elapsed time of real-world
SPARQL queries. The proposed two-step prediction performs better than one-
step prediction because it considers the broad range of observed elapsed time.
The prediction in the warm stage is generally better than in the cold stage. We
identify the reason comes from same structured queries because many queries are
issued by programmatic users, who tend to issue queries using query templates.
Our work is on static data and we will consider dynamic workload in the future.
Techniques that can incorporate new training data into an existing model will
also be considered.
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