Skip to main content

Constant Factor Approximation for the Weighted Partial Degree Bounded Edge Packing Problem

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10043))

  • 1236 Accesses

Abstract

In the partial degree bounded edge packing problem (PDBEP), the input is an undirected graph \(G=(V,E)\) with capacity \(c_v\in {\mathbb {N}}\) on each vertex. The objective is to find a feasible subgraph \(G'=(V,E')\) maximizing \(|E'|\), where \(G'\) is said to be feasible if for each \(e=\{u,v\}\in E'\), \(\deg _{G'}(u)\le c_u\) or \(\deg _{G'}(v)\le c_v\). In the weighted version of the problem, additionally each edge \(e\in E\) has a weight w(e) and we want to find a feasible subgraph \(G'=(V,E')\) maximizing \(\sum _{e\in E'} w(e)\). The problem is already NP-hard if \(c_v = 1\) for all \(v\in V\) [Zhang, FAW-AAIM 2012].

In this paper, we introduce a generalization of the PDBEP problem. We let the edges have weights as well as demands, and we present the first constant-factor approximation algorithms for this problem. Our results imply the first constant-factor approximation algorithm for the weighted PDBEP problem, improving the result of Aurora et al. [FAW-AAIM 2013] who presented an \(O(\log n)\)-approximation for the weighted case.

We also present a PTAS for H-minor free graphs, if the demands on the edges are bounded above by a constant, and we show that the problem is APX-hard even for cubic graphs and bounded degree bipartite graphs with \(c_v = 1, \; \forall v\in V\).

M. Jena—The author is supported by a TCS Scholarship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alimonti, P., Kann, V.: Hardness of approximating problems on cubic graphs. In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 288–298. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  2. Aurora, P., Singh, S., Mehta, S.K.: Partial degree bounded edge packing problem with arbitrary bounds. In: Tan, X., Zhu, B., Fellows, M. (eds.) FAW-AAIM 2013. LNCS, vol. 7924, pp. 24–35. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Babenko, M.A., Gusakov, A.: New exact and approximation algorithms for the star packing problem in undirected graphs. In: 28th International Symposium on Theoretical Aspects of Computer Science, STACS 2011, 10–12 March 2011, Dortmund, Germany, pp. 519–530 (2011)

    Google Scholar 

  4. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bu, T.-M., Yuan, C., Zhang, P.: Computing on binary strings. Theoret. Comput. Sci. 562, 122–128 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chlebík, M., Chlebíková, J.: Approximation hardness of dominating set problems in bounded degree graphs. Inf. Comput. 206(11), 1264–1275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dehne, F., Fellows, M.R., Fernau, H., Prieto, E., Rosamond, F.A.: nonblocker: parameterized algorithmics for minimum dominating set. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 237–245. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.-i.: Algorithmic graph minor theory: decomposition, approximation, and coloring. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23–25 October 2005, Pittsburgh, PA, USA, pp. 637–646 (2005)

    Google Scholar 

  10. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D., et al. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Heidelberg (1972)

    Chapter  Google Scholar 

  12. Lovász, L., Plummer, M.D.: Matching Theory, vol. 367. American Mathematical Soc., Providence (2009)

    Book  MATH  Google Scholar 

  13. Micali, S., Vazirani, V.V.: An \({O}(\sqrt{|{V}|}|{E}|)\) algoithm for finding maximum matching in general graphs. In: 21st Annual Symposium on Foundations of Computer Science, pp. 17–27. IEEE (1980)

    Google Scholar 

  14. Parekh, O.: Iterative packing for demand and hypergraph matching. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 349–361. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Parekh, O., Pritchard, D.: Generalized hypergraph matching via iterated packing and local ratio. In: Bampis, E., Svensson, O. (eds.) WAOA 2014. LNCS, vol. 8952, pp. 207–223. Springer, Heidelberg (2015)

    Google Scholar 

  16. Sahni, S.K.: On the knapsack and other computationally related problems (1973)

    Google Scholar 

  17. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24. Springer Science & Business Media, Heidelberg (2003)

    MATH  Google Scholar 

  18. Shepherd, B., Vetta, A.: The demand matching problem. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 457–474. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Zhang, P.: Partial degree bounded edge packing problem. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM 2012 and FAW 2012. LNCS, vol. 7285, pp. 359–367. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Aurora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Aurora, P., Jena, M., Raman, R. (2016). Constant Factor Approximation for the Weighted Partial Degree Bounded Edge Packing Problem. In: Chan, TH., Li, M., Wang, L. (eds) Combinatorial Optimization and Applications. COCOA 2016. Lecture Notes in Computer Science(), vol 10043. Springer, Cham. https://doi.org/10.1007/978-3-319-48749-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48749-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48748-9

  • Online ISBN: 978-3-319-48749-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics