Abstract
Interval temporal logics are expressive formalisms for temporal representation and reasoning, which use time intervals as primitive temporal entities. They have been extensively studied for the past two decades and successfully applied in AI and computer science. Unfortunately, they lack the ability of expressing promptness conditions, as it happens with the commonly-used temporal logics, e.g., LTL: whenever we deal with a liveness request, such as “something good eventually happens”, there is no way to impose a bound on the delay with which it is fulfilled. In the last years, such an issue has been addressed in automata theory, game theory, and temporal logic. In this paper, we approach it in the interval temporal logic setting. First, we introduce PROMPT- PNL, a prompt extension of the well-studied interval temporal logic PNL, and we prove the undecidability of its satisfiability problem; then, we show how to recover decidability (NEXPTIME-completeness) by imposing a natural syntactic restriction on it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)
Allen, J.F.: Towards a general theory of action and time. Artif. Intell. 23(2), 123–154 (1984)
Almagor, S., Hirshfeld, Y., Kupferman, O.: Promptness in \({\omega }\)-regular automata. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 22–36. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15643-4_4
Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for “model measuring”. ACM Trans. Comput. Log. 2(3), 388–407 (2001). http://doi.acm.org/10.1145/377978.377990
Aminof, B., Murano, A., Rubin, S., Zuleger, F.: Prompt alternating-time epistemic logics. In: Baral, C., Delgrande, J.P., Wolter, F. (eds.) Proceedings of the 15th KR, pp. 258–267. AAAI Press (2016)
Bojańczyk, M., Colcombet, T.: Bounds in \(\omega \)-regularity. In: LICS, pp. 285–296. IEEE Computer Society (2006)
Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Metric propositional neighborhood interval logics on natural numbers. Softw. Syst. Model. (SoSyM) 12(2), 245–264 (2013)
Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood logics: expressiveness, decidability, and undecidable extensions. Ann. Pure Appl. Logic 161(3), 289–304 (2009). http://dx.doi.org/10.1016/j.apal.2009.07.003
Chatterjee, K., Henzinger, T.A., Horn, F.: Finitary winning in \(\omega \)-regular games. ACM Trans. Comput. Logic 11(1) (2009)
Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Interval temporal logics: a journey. Bull. Eur. Assoc. Theoret. Comput. Sci. 105, 73–99 (2011)
Della Monica, D., Montanari, A., Murano, A., Sala, P.: Prompt interval temporal logic (extended version) (2016). http://wpage.unina.it/dario.dellamonica/techrep/promptPNL_ext.pdf
Della Monica, D., Montanari, A., Sala, P.: The importance of the past in interval temporal logics: the case of propositional neighborhood logic. In: Artikis, A., Craven, R., Kesim Çiçekli, N., Sadighi, B., Stathis, K. (eds.) Logic Programs, Norms and Action. LNCS (LNAI), vol. 7360, pp. 79–102. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29414-3_6
Fijalkow, N., Zimmermann, M.: Cost-Parity and Cost-Streett Games. In: FSTTCS. LIPIcs, vol. 18, pp. 124–135 (2012)
Gennari, R., Tonelli, S., Vittorini, P.: An AI-based process for generating games from flat stories. In: Proceedings of the 33rd SGAI, pp. 337–350 (2013)
Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM 38(4), 935–962 (1991). http://doi.acm.org/10.1145/115234.115351
Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal Methods Syst. Des. 34(2), 83–103 (2009)
Laban, S., El-Desouky, A.: RISMA: a rule-based interval state machine algorithm for alerts generation, performance analysis and monitoring real-time data processing. In: Proceedings of the EGU General Assembly 2013. Geophysical Research Abstracts, vol. 15 (2013)
Lodaya, K., Parikh, R., Ramanujam, R., Thiagarajan, P.: A logical study of distributed transition systems. Inf. Comput. 119(1), 91–118 (1995). http://www.sciencedirect.com/science/article/pii/S0890540185710784
Mogavero, F., Murano, A., Sorrentino, L.: On promptness in parity games. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 601–618. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5_40
Moszkowski, B.: Reasoning about digital circuits. Technical report. stan-cs-83-970, Dept. of Computer Science, Stanford University, Stanford, CA (1983)
Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science (FOCS), pp. 46–57. IEEE Computer Society (1977)
Pratt-Hartmann, I.: Temporal prepositions and their logic. Artif. Intell. 166(1–2), 1–36 (2005)
Zhou, C., Hansen, M.R.: Duration calculus: a formal approach to real-time systems. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2004)
Zimmermann, M.: Optimal bounds in parametric LTL games. Theor. Comput. Sci. 493, 30–45 (2013). http://dx.doi.org/10.1016/j.tcs.2012.07.039
Acknowledgements
The authors acknowledge the support from the Italian GNCS project Logics, automata, and games for auto-adaptive systems. In addition, Dario Della Monica and Aniello Murano acknowledge the support from the POR Campania project Strategic reasoning for multi-agent systems.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Della Monica, D., Montanari, A., Murano, A., Sala, P. (2016). Prompt Interval Temporal Logic. In: Michael, L., Kakas, A. (eds) Logics in Artificial Intelligence. JELIA 2016. Lecture Notes in Computer Science(), vol 10021. Springer, Cham. https://doi.org/10.1007/978-3-319-48758-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-48758-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48757-1
Online ISBN: 978-3-319-48758-8
eBook Packages: Computer ScienceComputer Science (R0)