
19 April 2024

Università degli studi di Udine

Original

Prompt interval temporal logic

Publisher:

Published
DOI:10.1007/978-3-319-48758-8_14

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:

Springer Verlag

This version is available http://hdl.handle.net/11390/1110495 since 2021-03-16T13:07:49Z

Prompt Interval Temporal Logic

Dario Della Monica1, Angelo Montanari2, Aniello Murano1, and Pietro Sala3

1 Università degli Studi di Napoli “Federico II”, Napoli, Italy,
dario.dellamonica@unina.it,murano@na.infn.it

2 University of Udine, Udine, Italy angelo.montanari@uniud.it
3 University of Verona, Verona, Italy, pietro.sala@univr.it

Abstract. Interval temporal logics are expressive formalisms for temporal repre-
sentation and reasoning, which use time intervals as primitive temporal entities.
They have been extensively studied for the past two decades and successfully
applied in AI and computer science. Unfortunately, they lack the ability of ex-
pressing promptness conditions, as it happens with the commonly-used temporal
logics, e.g., LTL: whenever we deal with a liveness request, such as “something
good eventually happens”, there is no way to impose a bound on the delay with
which it is fulfilled. In the last years, such an issue has been addressed in au-
tomata theory, game theory, and temporal logic. In this paper, we approach it in
the interval temporal logic setting. First, we introduce PROMPT-PNL, a prompt
extension of the well-studied interval temporal logic PNL, and we prove the unde-
cidability of its satisfiability problem; then, we show how to recover decidability
(NEXPTIME-completeness) by imposing a natural syntactic restriction on it.

1 Introduction

Interval temporal logics provide a powerful framework suitable for reasoning about
time. Unlike classic temporal logics, such as Linear Temporal Logic (LTL) [21] and
the like, they use time intervals, instead of time points, as primitive temporal entities.
Such a distinctive feature turns out to be very useful in various Computer Science and
AI application domains, ranging from hardware and real-time system verification to
natural language processing, from constraint satisfaction to planning [1,2,10,20,22,23].
As concrete applications, we mention TERENCE [14], an adaptive learning system for
poor comprehenders and their educators (based on Allen’s interval algebra IA [1]),
and RISMA [17], an algorithm to analyze behavior and performance of real-time data
systems (based on Halpern and Shoham’s modal logic of Allen’s relations HS [15]).

A fundamental class of properties that can be expressed in (both interval- and point-
based) temporal logics is that of liveness properties, which allow one to state that some-
thing “good” will eventually happen. However, a limitation that is common to most tem-
poral logics is the lack of support for promptness: it is not possible to bound the delay
with which a liveness request is fulfilled, despite the fact that this is desirable for many
practical applications (see [16] for a convincing argument). To overcome such a short-
coming, a whole body of work has been recently devoted to the study of promptness.
In [4,16], the authors extend LTL with the ability of bounding the delay with which a
temporal request is satisfied. In [3], the use of prompt accepting conditions in the con-
text of ω-regular automata is explored by introducing prompt-Büchi automata, whose

2

accepting condition imposes the existence of a bound on the number of non-accepting
states in between two consecutive occurrences of accepting ones. Prompt extensions of
LTL have also been investigated outside the realm of closed systems. Two-player turn-
based games with perfect information have been explored in the prompt LTL setting in
[24]. In [9], the authors lift the prompt semantics to ω-regular games, under the parity
winning condition, by introducing finitary parity games. They make use of the concept
of distance between positions in a play that refers to the number of edges traversed in
the game arena; the classical parity winning condition is then reformulated to take into
consideration only those states occurring with a bounded distance. Such an idea has
been generalised to deal with more involved prompt parity conditions [13,19]. In the
field of formal languages, promptness comes into play in [6], where ωB-regular lan-
guages and their automata counterpart, known as ωB-automata, are studied. Intuitively,
ωB-regular languages extend ω-regular ones with the ability of bounding the distance
between occurrences of sub-expressions in consecutive ω-iterations, within each word
of the language. Finally, an extension of alternating-time epistemic temporal logic with
prompt-eventuality has been recently investigated in [5].

In this paper, we show that interval temporal logics can be successfully provided
with a support for prompt-liveness specifications by lifting the work done in [4,16] to
the interval-based setting.

In [4], the language of LTL is enriched with parameterized versions of temporal
modalities F (eventually) and U (until), as well as of the dual modalities G (globally)
andR (release). The resulting logic, called PLTL, features the following parameterized
modalities: F≤x, F>y , G≤y , G>x, U≤x, U>y , R≤y , and R>x, where x ∈ X , y ∈ Y ,
and X and Y are two disjoint sets of bounding variables. Intuitively, a formula F≤xφ
is true if φ is satisfied within x time units, according to the valuation of x (the other pa-
rameterized modalities have an analogous interpretation). Thus, PLTL models are LTL
models, i.e., words over the powerset of the set of atomic propositions, enriched with a
valuation for the bounding variables in X ∪ Y . The satisfiability problem for PLTL is
PSPACE-complete, as for LTL. The assumption that X and Y are disjoint is crucial in
retaining decidability. In [16], the authors introduce the logic PROMPT-LTL, which re-
stricts PLTL in three ways: (i) a parameterized version is introduced for the modality F
only (parameterized versions of modalities G, U , and R are not included); (ii) only up-
per bounds appear in parameterized modalities, i.e., no subscript of the form >x occurs;
(iii) there is only one bounding variable. The restriction imposed by PROMPT-LTL
is less strong than it looks like: as shown in [4], operator F≤x, along with the classic
LTL constructs, is enough to define operators G>x, U≤x, R>x (i.e., all the operators
involving in their subscript variables in X). As PROMPT-LTL enriches LTL with the
ability of limiting the amount of time a fulfillment of an existential request (correspond-
ing to a liveness property) can be delayed, it can be thought of as an extension of LTL
with prompt liveness. In [16], it is shown that reasoning about PROMPT-LTL is not
harder than reasoning about LTL, with respect to a series of basic problems, including
satisfiability (PSPACE-complete).

In the present paper, we show how to extend the logic PNL of temporal neigh-
borhood (a well-known fragment of HS whose satisfiability problem is NEXPTIME-
complete [8]), with the ability of expressing prompt-liveness properties. Following

3

the approach of [16], we introduce ‘prompt’ versions (i.e., upper bounds only) of all
modalities of PNL. The resulting modality templates are as follows: the prompt-right-
adjacency 〈Ax〉 and the prompt-left-adjacency 〈Ax〉, capturing prompt-liveness in the
future and in the past, respectively, as well as the dual modalities [Ax] and [Ax]. In-
tuitively, a modality 〈Ax〉 (for some upper bound x) forces the existence of an event
starting exactly when the current one terminates and ending within an amount of time
bounded above by the value of x. Similarly, 〈Ax〉 forces the existence of an event end-
ing exactly when the current one begins and starting at most x time units before the
beginning of the current one. Modalities [Ax] and [Ax] express dual properties in the
standard way, namely, [Ax]ψ stands for ¬〈Ax〉¬ψ and [Ax]ψ stands for ¬〈Ax〉¬ψ. We
name the proposed logic PROMPT-PNL (Section 2).

We first prove that the future fragment of PROMPT-PNL (PROMPT-RPNL), in-
volving the future modalities 〈A〉, [A], 〈Ax〉, and [Ax] only, is expressive enough to
encode the finite colouring problem, known to be undecidable [18]. Undecidability of
PROMPT-RPNL (and PROMPT-PNL) immediately follows (Section 3). Notably, unlike
LTL, PNL is strictly more expressive than its future fragment RPNL (see [12]); such a
separation result holds between PROMPT-PNL and PROMPT-RPNL as well. Our un-
decidability result hinges on the unrestricted use of bounding variables within prompt
modalities, which allows one to somehow establish tight bounds for the length of inter-
vals. We show that decidability can be recovered by using two disjoint sets of bounding
variables, one for existential modalities and the other for universal ones. Formulas of
the resulting logic, which we name PROMPTd-PNL, enjoy some useful monotonicity
property, i.e., the truth of a formula 〈Ax〉ψ under a certain interpretation σ(x) of the
bounding variable x implies its truth under every interpretation σ′, with σ′(x) ≥ σ(x).
This allows us to prove a small (pseudo-)model property for PROMPTd-PNL, from which
we conclude that the satisfiability problem for PROMPTd-PNL is NEXPTIME-complete
(Section 4). Due to lack of space, most of the proofs are omitted (see [11] for full
proofs).

2 The logic PROMPT-PNL

Let us start with some basic notions of interval-based temporal logics. A linear order
D is a pair 〈D,<〉, where D is a set, called domain, whose elements are referred to
as points, and < is a strict total order over D. A (strongly) discrete linear order is a
linear order such that there are only finitely many points in between any two points.
In the rest of the paper, we tacitly assume every domain to be discrete. For the sake of
simplicity, we identify the domain of a linear order with the linear order itself, e.g, we
write “d ∈ D” instead of “d ∈ D”. Let d ∈ D. The successors (resp., predecessors) of
d in D are the points d′ ∈ D such that d < d′ (resp., d′ < d); the immediate successor
(resp., immediate predecessor) of d in D, denoted by succD(d) (resp., predD(d)), is (if
any) the point d′ ∈ D such that d′ is a successor (resp., predecessor) of d in D and no
point d′′ ∈ D exists with d < d′′ < d′ (resp., d′ < d′′ < d). Note that succD(d) (resp.,
predD(d)) is defined unless d is the greatest (resp., least) element in D. Given a linear
order D and two points a, b ∈ D, with a < b, we denote by [a, b] an interval (over D).
The set of intervals over a linear order D is denoted by I(D). An interval structure (over

4

a countable set AP of atomic propositions) is a pair 〈D, V 〉, where D is a linear order
and V : I(D)→ 2AP is a valuation function, which assigns to each interval over D the
set of atomic proposition that are true over it. Given a linear order D and a, b ∈ D, we
denote by D≥a (resp., D>a, D≤a, D<a, D[a,b], D]a,b[, D[a,b[, D]a,b]) the set of elements
d ∈ D such that d ≥ a (resp., d > a, d ≤ a, d < a, a ≤ d ≤ b, a < d < b, a ≤ d < b,
a < d ≤ b). For instance, we denote by R>0 the set of positive reals.
Syntax and semantics. Let AP (atomic propositions) and X (bounding variables) be
two countable sets. Formulas of PROMPT-PNL in negation normal form are defined as
follows:

ϕ ::= p | ϕ ∧ ϕ | 〈A〉ϕ | 〈A〉ϕ | 〈Ax〉ϕ | 〈Ax〉ϕ
| ¬p | ϕ ∨ ϕ | [A]ϕ | [A]ϕ | [Ax]ϕ | [Ax]ϕ

where p ∈ AP and x ∈ X . We also use other standard Boolean connectives, e.g.,
→, and logical constants > and ⊥, which are defined in the usual way. We denote
by PROMPT-RPNL the PROMPT-PNL fragment obtained by excluding past modali-
ties 〈A〉, [A], 〈Ax〉, and [Ax], and we write PROMPT-(R)PNL when we refer to both
formalisms. In the following, we will take the liberty of writing PROMPT-(R)PNL for-
mulas not in negation normal form when useful.

PROMPT-(R)PNL models are interval structures enriched with a valuation function
for bounding variables inX and a metric over the underlying domain. Formally, a model
for PROMPT-(R)PNL (over AP and X) is a quadruple 〈D, V, σ, δ〉, where 〈D, V 〉 is
an interval structure (D is the domain of the model), σ : X → R>0 is a valuation
function for bounding variables, and δ : D×D→ R>0 is a metric over D (i.e., the pair
(D, δ) is a metric space) satisfying the additional properties: for every d, d′, d′′ ∈ D
(i) if d < d′ < d′′, then δ(d, d′′) = δ(d, d′) + δ(d′, d′′), (ii) if d has infinitely many
successors in D, then the set {δ(d, d̄) | d < d̄} is not bounded above, and (iii) if d has
infinitely many predecessors in D, then the set {δ(d̄, d) | d̄ < d} is not bounded above.
For a model M = 〈D, V, σ, δ〉, we let DM = D, VM = V , σM = σ, and δM = δ,
that is, DM , VM , σM , and δM denote the four components of M . A PROMPT-(R)PNL
model is finite (resp., infinite) if so is its domain.

The truth value of a PROMPT-PNL formula over a model and an interval in it is
inductively defined as follows:

– M, [a, b] |= p if and only if p ∈ VM ([a, b]), for every p ∈ AP;
– M, [a, b] |= ¬p if and only if p 6∈ VM ([a, b]), for every p ∈ AP;
– M, [a, b] |= ϕ1 ∧ ϕ2 if and only if M, [a, b] |= ϕ1 and M, [a, b] |= ϕ2;
– M, [a, b] |= ϕ1 ∨ ϕ2 if and only if M, [a, b] |= ϕ1 or M, [a, b] |= ϕ2;
– M, [a, b] |= 〈A〉ϕ if and only if there is c ∈ D>bM such that M, [b, c] |= ϕ;
– M, [a, b] |= [A]ϕ if and only if for all c ∈ D>bM it holds M, [b, c] |= ϕ;
– M, [a, b] |= 〈A〉ϕ if and only if there is c ∈ D<aM such that M, [c, a] |= ϕ;
– M, [a, b] |= [A]ϕ if and only if for all c ∈ D<aM it holds M, [c, a] |= ϕ;
– M, [a, b] |= 〈Ax〉ϕ if and only if there is c ∈ D>bM , with δM (b, c) ≤ σM (x),

such that M, [b, c] |= ϕ, for every x ∈ X;
– M, [a, b] |= [Ax]ϕ if and only if for all c ∈ D>bM , with δM (b, c) ≤ σM (x),

it holds M, [b, c] |= ϕ, for every x ∈ X;
– M, [a, b] |= 〈Ax〉ϕ if and only if there is c ∈ D<aM , with δM (c, a) ≤ σM (x),

such that M, [c, a] |= ϕ, for every x ∈ X;

5

– M, [a, b] |= [Ax]ϕ if and only if for all c ∈ D<aM , with δM (c, a) ≤ σM (x),
it holds M, [c, a] |= ϕ, for every x ∈ X .

The truth value of a PROMPT-RPNL formula is obtained, as expected, by restricting to
the relevant clauses only.

In PNL, modalities 〈L〉 and 〈L〉, corresponding to Allen’s relations later and be-
fore, are definable as: 〈L〉ϕ ≡ 〈A〉〈A〉ϕ and 〈L〉ϕ ≡ 〈A〉〈A〉ϕ. Additionally, in
PROMPT-PNL it is possible to define the ‘prompt’ counterparts of modalities 〈L〉 and
〈L〉 as: 〈Lx〉ϕ ≡ 〈Ax〉〈Ax〉ϕ and 〈Lx〉ϕ ≡ 〈Ax〉〈Ax〉ϕ. The resulting semantic inter-
pretation for 〈Lx〉 and 〈Lx〉 is as follows:

– M, [a, b] |= 〈Lx〉ϕ if and only if there is [c, d] ∈ I(DM) such that b < c, δM (b, c) ≤
σM (x), δM (c, d) ≤ σM (x), and M, [c, d] |= ϕ;

– M, [a, b] |= 〈Lx〉ϕ if and only if there is [c, d] ∈ I(DM) such that d < a,
δM (d, a) ≤ σM (x), δM (c, d) ≤ σM (x), and M, [c, d] |= ϕ.
Intuitively, a modality 〈Lx〉, for some bounding variable x, requires the existence of

an event starting and ending within a bounded amount of time after the termination of
the current one (modalities 〈Lx〉 impose an analogous constraint in the past). Obviously,
only 〈Lx〉 is definable in PROMPT-RPNL (〈Lx〉 is not).

The globally-in-the-future modality [G] is defined as [G]ψ ≡ ψ∧[A]ψ∧[A][A]ψ, for
every PROMPT-PNL formula ψ; analogously the prompt-globally-in-the-future modal-
ity [Gx] is defined as [Gx]ψ ≡ ψ ∧ [Ax]ψ ∧ [A][Ax]ψ, for every PROMPT-PNL for-
mula ψ and x ∈ X . Given a PROMPT-(R)PNL model M , modalities [G] and [Gx]

induce the sets G[a,b]M = {[a, b]} ∪ {[c, d] ∈ I(DM) | b ≤ c} and G[a,b],xM = {[a, b]} ∪
{[c, d] ∈ I(DM) | b ≤ c and δM (c, d) ≤ σM (x)}. We omit the subscript M when it is
clear from the context. For every PROMPT-(R)PNL model M , [a, b] ∈ I(DM), and
PROMPT-PNL formula ψ, it holds that M, [a, b] |= [G]ψ if and only if M, [c, d] |= ψ
for every [c, d] ∈ G[a,b] and M, [a, b] |= [Gx]ψ if and only if M, [c, d] |= ψ for every
[c, d] ∈ G[a,b],x. Finally, for a model M and [a, b] ∈ I(DM), we define the length of
[a, b] (in M) as the value δM (a, b) and, for every p ∈ AP , if M, [a, b] |= p, then we say
that [a, b] is a p-interval (in M).
The satisfiability problem. A PROMPT-(R)PNL formula ϕ is satisfiable if, and only
if, there exist a PROMPT-(R)PNL model M and an interval [x, y] in M such that
M, [x, y] |= ϕ. Moreover, a satisfiable formula is said to be finitely satisfiable if there
exists a finite model for it; otherwise it is non-finitely satisfiable. The satisfiability (resp.,
finite satisfiability) problem for PROMPT-(R)PNL consists in deciding whether a given
PROMPT-(R)PNL formula is satisfiable (resp., finitely satisfiable).

3 Undecidability of PROMPT-RPNL

We prove the undecidability of the satisfiability problem for the logic PROMPT-RPNL
(and thus for PROMPT-PNL as well), by a reduction from the finite coloring problem
(FCP) [18]. An instance of FCP (aka finite tiling problem) is a tuple ∆ = 〈C,H, V, ci,
cf 〉, where C is a finite, non-empty set of colours, H,V ⊆ C × C are total binary
relations over the set of colours C, and ci, cf ∈ C are distinguished colours. A solution
to ∆ is a pair 〈C, (K,L)〉, where K,L ∈ N and C : {0, . . . ,K} × {0, . . . , L} → C is a
colouring function such that C(0, 0) = ci, C(K,L) = cf , and, in addition,

6

– (C(i, j), C(i+ 1, j)) ∈ H , for each i < K and j ≤ L (horizontal constraint), and
– (C(i, j), C(i, j + 1)) ∈ V , for each i ≤ K and j < L (vertical constraint).

FCP consists in establishing whether there are two natural numbers K and L, and a
colouring of the plane {0, . . . ,K} × {0, . . . , L} such that horizontal and vertical con-
straints are fulfilled, and bottom-left and top-right colours are given. CFP is undecid-
able [18, Proposition 7.2]. We encode CFP by means of a PROMPT-RPNL formula. The
different aspects of the problem are encoded by means of (blocks of) formulas and the
correctness of such partial encodings is testified by the corresponding lemmas below.
Clearly, the conjunction of all these formulas is satisfiable if and only if CFP admits a
solution. In what follows, we fix an interval model M = 〈D, V, σ, δ〉.

For every d ∈ D and x ∈ X , we define bσcd(x) = max{δ(d, d′) ∈ R>0 | d′ ∈
D>d and δ(d, d′) ≤ σ(x)}. It clearly holds that bσcd(x) ≤ σ(x) and, for every d′ ∈
D≥d, we have that δ(d, d′) ≤ σ(x) implies δ(d, d′) ≤ bσcd(x). For every x ∈ X , there
is exactly one point d′ ∈ D≥d such that δ(d, d′) = bσcd(x); we call such a point the
x-canonical successor of d. The length of an interval [d, d′] ∈ I(D), where d′ is the
x-canonical successor of d, is said to be x-canonical, for every x ∈ X .

Let succ-upperbound be the formula [G](〈A〉> → 〈As〉>), where s ∈ X .

Lemma 1. If M, [a, b] |= succ-upperbound for some [a, b], then for every c ∈ D≥b
that is not the greatest element in D it holds δ(c, succD(c)) ≤ bσcc(s). Moreover,
let c′ be the x-canonical successor of c. If c′ is not the greatest element in D, then
bσcc(x) + σ(s) > σ(x), for every x ∈ X .

Let less-than(x , y) be the formula [G](〈A〉> → 〈Ay〉auxx ,y) ∧ [G][Ax]¬auxx ,y
(it is a parametric formula to be instantiated with some x, y ∈ X).

Lemma 2. If M, [a, b] |= less-than(x , y) for some [a, b], then σ(x) < bσcc(y) holds
for every c ∈ D≥b, unless c is the greatest element in D.

Let ∃-last be the conjunction of the following formulas:

¬last ∧ 〈A〉〈A〉last ∧ [G](〈A〉last→
∧

p∈AP
[A](¬p ∧ [A]¬p)) (1)

[G](〈A〉last→ [A]¬〈A〉last) (2)
[G]((last→ 〈A〉unique) ∧ (〈A〉unique→ [A]¬〈A〉unique)) (3)

Lemma 3. If M, [a, b] |= ∃-last for some [a, b], then there is exactly one last-interval
in G[a,b], say it [c, d]. Moreover, it holds c > b and there is no p-interval starting in c or
after it, for every p ∈ AP \ {last}.

Let a ∈ D and [c, d] ∈ I(D) be the unique last-interval (see Lemma 3). Given
p ∈ AP , a p-chain starting at a (or, simply, p-chain) is a finite sequence of p-intervals
[a0, b0], [a1, b1], . . . , [am, bm] such that a = a0, bm = c, and bi = ai+1 for every
i ∈ {0, 1, . . . ,m− 1}. Let chain(p, x) be the parametric formula, to be instantiated
with some p ∈ AP and x ∈ X , defined as the conjunction of the following ones:

succ-upperbound ∧ ∃-last (4)
¬p ∧ 〈Ax〉p ∧ [G]((p ∧ ¬〈A〉last)→ 〈Ax〉p) (5)

7

[G](p→ p1 ∨ p2) (6)

[G](〈A〉pi → [Ax][A]p+
i) i ∈ {1, 2} (7)

[Gx](〈A〉p+
i → p−i) i ∈ {1, 2} (8)

[G](pi → ¬〈A〉p−i) i ∈ {1, 2} (9)
[G](〈A〉p→ [Ax](¬p→ [A]¬p)) (10)

Lemma 4. If M, [a, b] |= chain(p, x) for some [a, b], then there is a finite p-chain
starting at b whose intervals have x-canonical length. Moreover, no other p-interval
exists in G[a,b],x besides the ones in such a p-chain.

We now provide an encoding of a finite plane {0, . . . ,K} × {0, . . . , L}, for some
K,L ∈ N. The idea is to use a u-chain whose intervals are either tile-intervals, encoding
some point of the finite plane, or ∗-intervals, which are used as separators between rows
of the plane. Let plane be the conjunction of the following formulas:

less-than(s, x) ∧ less-than(x , y) ∧ chain(u, x) ∧ chain(row, y) (11)
[G]((u↔ ∗ ∨ tile) ∧ (∗ → ¬tile)) (12)
〈A〉∗ ∧ [G]((∗ → 〈A〉tile) ∧ (u ∧ 〈A〉last→ tile)) (13)
[G](〈A〉row→ 〈A〉∗) (14)
[G](〈A〉∗ → [Ay](〈A〉∗ → row)) (15)

Lemma 5. If M, [a, b] |= plane for some [a, b], then there is a finite sequence of points
b = p10 < p11 < . . . < p1n1

= p20 < p21 < . . . < p2n2
= p30 < . . . < pr−1nr−1

= pr0 <

. . . < prnr , with r ≥ 1 and ni > 1 for every i ∈ {1, . . . , r} such that: (i) [pi0, p
i
1] is a

∗-interval and its length is x-canonical, for every i ∈ {1, . . . , r}; (ii) [pij , p
i
j+1] is a tile-

interval and its length is x-canonical, for every i ∈ {1, . . . , r} and j ∈ {1, . . . , ni−1};
(iii) [pi0, p

i+1
0] is a row-interval and its length is y-canonical, for every i ∈ {1, . . . , r−

1}; (iv) M, [prnr , p
′] is the unique last-interval, for some p′ > prnr . Moreover, no other

∗-interval (resp., tile-interval) exists in G[a,b],x.

The encoding of the finite plane {0, . . . ,K}×{0, . . . , L}we have obtained so far is
incomplete, the problem being that rows (row-intervals) do not necessarily contain the
same number of tiles (tile-intervals). In order to overcome such a problem, we introduce
below corr-intervals, which are used to link the ith tile-interval of a row to the ith tile-
interval of the next row (if any) and to the ith tile-interval of the previous row (if any).
This will guarantee that each row of our encoding features the same number of tiles.

Let w -def be the conjunction of the following formulas:

less-than(x ,w) ∧ less-than(w , y) (16)
[Ay]¬〈A〉∗-aux ∧ (〈Ay〉(row ∧ ¬〈Ax〉last)→ 〈A〉〈A〉∗-aux) (17)
〈As〉〈Aw〉([A](¬last ∧ [A]¬last) ∨ 〈A〉∗-aux) (18)

Lemma 6. If M, [a, b] |= plane ∧ w -def for some [a, b], then σ(w) < bσcc(y) ≤
σ(y) < σ(w) + σ(s) for every c ∈ D≥b, unless c is the greatest element in D.

8

Let correspondence be the conjunction of the following formulas:

plane ∧ w -def ∧ less-than(s, z) ∧ less-than(z , x) (19)
[G](〈Ax〉u→ [Az]〈Az〉(u-suffix ∧ (〈Ax〉u ∨ 〈A〉last))) (20)
[Gs]¬u-suffix (21)
[G]((row ∧ ¬〈A〉last)→ corr) (22)
[G]((〈Ax〉tile ∧ 〈A〉〈Ax〉∗)→ 〈Ay〉corr) (23)
[Gw]¬corr (24)
[G](corr→ 〈A〉tile) (25)
[G](〈Ax〉(tile ∧ 〈Ax〉∗)→ [Ay](corr→ 〈Ax〉(tile ∧ 〈Ax〉∗))) (26)

Lemma 7. If M, [a, b] |= correspondence for some [a, b], then [pij , p
i+1
j] is a corr-

interval, with σ(w) < δ(pij , p
i+1
j) ≤ σ(y), for every i ∈ {1, . . . , r − 1} and j ∈

{0, . . . , ni − 1}. Moreover, for every i ∈ {1, . . . , r − 1}, it holds that ni = ni+1.

Now, let ∆ = 〈C,H, V, ci, cf 〉 be an instance of FCP and let ϕ∆ be the conjunction
of the following formulas:

correspondence ∧ 〈Ax〉ci ∧ [Gx]((tile ∧ 〈A〉last)→ cf) (27)

[Gx](tile↔
∨

c∈C
c) ∧ [G](

∧
c,c′∈C,c6=c′

¬(c ∧ c′)) (28)

[G](〈Ax〉(tile ∧ 〈Ax〉tile)→
∨

(c,c′)∈H
〈Ax〉(c ∧ 〈Ax〉c′)) (29)

[Gx]((〈Ax〉tile ∧ 〈Ay〉corr)→
∨

(c,c′)∈V
(〈Ax〉c ∧ [Ay](corr→ 〈Ax〉c′))) (30)

Lemma 8. The formula ϕ∆ is satisfiable iff the CFP instance ∆ has a positive answer.

Theorem 1. The satisfiability problem for PROMPT-RPNL, and thus the one for
PROMPT-PNL, is undecidable.

4 Decidability of PROMPTd-PNL

In this section, we show how to restrict the use of prompt modalities to get a fragment
of PROMPT-PNL with a decidable satisfiability problem.

We define PROMPTd-PNL as the fragment of PROMPT-PNL obtained by using dis-
joint sets of bounding variables for existential and universal prompt modalities. For-
mally, let us partition the set X of bounding variables into sets X3 and X2. The syntax
of PROMPTd-PNL is defined as:

ϕ ::= p | ϕ ∧ ϕ | 〈A〉ϕ | 〈A〉ϕ | 〈Ax〉ϕ | 〈Ax〉ϕ
| ¬p | ϕ ∨ ϕ | [A]ϕ | [A]ϕ | [Ay]ϕ | [Ay]ϕ

where p ∈ AP , x ∈ X3, and y ∈ X2. Since PROMPTd-PNL is a syntactic re-
striction of PROMPT-PNL, both formalisms share the same semantics. In particular,
a PROMPT-PNL model is a PROMPTd-PNL model as well. Analogously to the unre-
stricted case, we define PROMPTd-RPNL as PROMPTd-PNL devoid of past modalities
〈A〉, [A], 〈Ax〉, and [Ay].

9

PROMPTd-PNL is not closed under negation. For any given PROMPTd-PNL formula
ψ, we inductively define neg(ψ) as shown in Table 1 (neg(ψ) is not necessarily a
PROMPTd-PNL formula). If ψ is a (non-prompt) PNL formula, then neg(ψ) ≡ ¬ψ.
Moreover, we define neg(∼ψ) as ψ and thus we have that neg(neg(ψ)) ≡ ψ, for every
PROMPTd-PNL formula ψ.

ψψψ neg(ψ)neg(ψ)neg(ψ) ψψψ neg(ψ)neg(ψ)neg(ψ)

p ¬p ¬p p

ψ1 ∧ ψ2 neg(ψ1) ∨ neg(ψ2) ψ1 ∨ ψ2 neg(ψ1) ∧ neg(ψ2)

〈A〉ψ1 [A]neg(ψ1) [A]ψ1 〈A〉neg(ψ1)

〈A〉ψ1 [A]neg(ψ1) [A]ψ1 〈A〉neg(ψ1)

ψψψ neg(ψ)neg(ψ)neg(ψ)

〈Ax〉ψ1 or 〈Ax〉ψ1 or [Ay]ψ1 or [Ay]ψ1 ∼ψ

Table 1. Definition of neg(ψ), for a PROMPTd-PNL formula ψ

A close analysis of the proof of the undecidability of PROMPT-(R)PNL reveals that
the unrestricted use of bounding variables within prompt modalities allows one to some-
how establish tight bounds for the length of intervals, and this ability is crucial to the
encoding. We are going to show that decidability can be recovered by not allowing both
existential and universal prompt quantification on the same bounding variable. Intu-
itively, decidability follows from the fact that, when disjoint sets of bounding variables
are used within existential and universal prompt modalities, formulas enjoy a mono-
tonicity property, which does not hold for unrestricted PROMPT-(R)PNL formulas.

Let M = 〈D, V, σ, δ〉 be a PROMPT-PNL model, x ∈ X , and r ∈ R>0. We denote
by M[x:=r] the model 〈D, V, σ′, δ〉, where σ′(x) = r and σ′(x′) = σ(x′) for every
x′ ∈ X with x′ 6= x.
Proposition 1 (monotonicity). Let ψ be a formula of PROMPTd-PNL,M be a model of
PROMPTd-PNL, and [a, b] be an interval in M . If M, [a, b] |= ψ, then M[x:=r], [a, b] |=
ψ for all x ∈ X3 and r ∈ R>0, with r ≥ σM (x). In a dual fashion, if M, [a, b] |= ψ,
then M[y:=r], [a, b] |= ψ for all y ∈ X2 and r ∈ R>0, with r ≤ σM (y).

Checking that the above monotonicity property holds for PROMPTd-PNL is immediate.
To see that it does not hold for PROMPT-PNL, consider the formula ψ = [Ay]¬p ∧
〈Ax〉p∧ [Ax]¬q∧ 〈Az〉q. Clearly, ψ is satisfiable and all of its models are such that the
value of x is bounded below by the value of y and above by the value of z.

By Proposition 1, when studying the (finite) satisfiability problem for PROMPTd-PNL
we can assume, w.l.o.g., that |X3| = |X2| = 1, as every formula ψ, featuring (possi-
bly) more than one bounding variable in X3 or X2, can be transformed into an equi-
satisfiable one ψ′, obtained by replacing two distinguished (chosen randomly) variables
x̂ ∈ X3 and ŷ ∈ X2 for every x ∈ X3 and y ∈ X2, respectively. It is not diffi-
cult to check that, due to monotonicity, ψ is (finitely) satisfiable if and only if so is ψ′.
Therefore, for the remainder of the section, we set X3 = {x} and X2 = {y}.
Finite satisfiability. The finite satisfiability problem for PROMPTd-PNL can be reduced
to the one for plain PNL, known to be NEXPTIME-complete [8]. Let ψ be a formula of
PROMPTd-PNL and let plain(ψ) be the PNL formula obtained from ψ by:

10

(i) replacing existential prompt modalities by the corresponding non-prompt ver-
sions (i.e., substituting 〈A〉 for 〈Ax〉 and 〈A〉 for 〈Ax〉), and

(ii) replacing all sub-formulas of the forms [Ay]ψ and [Ay]ψ by the constant >.
It is not difficult to show by induction on the structure of ψ that if ψ is finitely sat-
isfiable, so is plain(ψ). On the other hand, if plain(ψ) is finitely satisfiable, then let
Mplain(ψ) = 〈D, V 〉 be a PNL model such that Mplain(ψ), [a, b] |= plain(ψ) for some
[a, b] ∈ I(D). We define δ(d, d′) = |{d′′ ∈ D | d < d′′ ≤ d′}| for every d, d′ ∈ D.
Since D is finite, both maxδ = max {δ(d, d′) | d, d′ ∈ D and d 6= d′} and minδ =
min {δ(d, d′) | d, d′ ∈ D and d 6= d′} are well defined, thus we can set σ(x) = maxδ ,
and σ(y) = minδ

2 . It is possible to show that M = 〈D, V, σ, δ〉 is such that M, [a, b] |=
ψ. Therefore, ψ is finitely satisfiable, too.

Theorem 2. The finite satisfiability problem for PROMPTd-PNL is NEXPTIME-complete.

In order to deal with formulas that are non-finitely satisfiable, in what follows we
show how the search for an infinite model can be reduced to the search for a finite
witness for it, within a finite search space. Decidability of the satisfiability problem for
PROMPTd-PNL immediately follows.

4.1 Prompt labeled interval structures

In this subsection we define labeled interval structures for PROMPTd-PNL formulas,
which are, intuitively, extended models, where intervals are labeled with sets of sub-
formulas (instead of sets of atomic propositions) of the considered formula. From now
on, we let ϕ be a generic PROMPTd-PNL formula.

Let Sub(ϕ) be the set of all sub-formulas of ϕ and let Sub¬(ϕ) = {neg(ψ) |
ψ ∈ Sub(ϕ)}. The closure of ϕ, denoted by Cl(ϕ), is the set Sub(ϕ) ∪ Sub¬(ϕ) ∪
{〈A〉ϕ, neg(〈A〉ϕ)}. Clearly, |Cl(ϕ)| ≤ 2 · |ϕ|+ 2 holds.

A future temporal request of ϕ is a formula in Cl(ϕ) having one of the following
forms: 〈A〉ψ, neg(〈A〉ψ), 〈Ax〉ψ, neg(〈Ax〉ψ), [Ay]ψ, neg([Ay]ψ), for some ψ. Anal-
ogously, a past temporal request of ϕ is a formula in Cl(ϕ) having one of the following
forms: 〈A〉ψ, neg(〈A〉ψ), 〈Ax〉ψ, neg(〈Ax〉ψ), [Ay]ψ, neg([Ay]ψ), for some ψ. We
denote by TRf (ϕ) (resp., TRp(ϕ)) the set of future (resp., past) temporal requests
of ϕ. In addition, the set of temporal requests of ϕ, denoted by TR(ϕ), is defined as
TRf (ϕ) ∪ TRp(ϕ).

A ϕ-atom is a subset A of Cl(ϕ) such that, for every ψ,ψ1, ψ2 ∈ Cl(ϕ), (i) ψ ∈ A
if and only if neg(ψ) /∈ A, and (ii) ψ1 ∨ ψ2 ∈ A if and only if ψ1 ∈ A or ψ2 ∈ A.
Notice that conditions (i) and (ii) imply ψ1∧ψ2 ∈ A if and only if ψ1 ∈ A and ψ2 ∈ A.
We denote the set of ϕ-atoms by Aϕ.

A prompt ϕ-labeled interval structure (pLISϕ) is a 5-tuple L = 〈D,L, δ,X ,Y〉,
where (D, δ) is a metric space, L : I(D)→ Aϕ is a labeling function (or simply label-
ing) such that ϕ ∈ L([a, b]) for some [a, b] ∈ I(D), and X ,Y ∈ N are the existential
and the universal bound, respectively. Sometimes, for the sake of brevity, we omit the
last three components of the 5-tuple and we denote a pLISϕ as a 2-tuple 〈D,L〉 instead.
Moreover, given a pLISϕ L = 〈D,L〉, we denote by DL its underlying domain D and
by LL the labeling function L. A pLISϕ L is finite (resp., infinite) if so is DL.

11

Given a pLISϕ L and a point d ∈ DL we define the set of future requests of
d in L, denoted by f-REQL(d), as

⋃
d′∈D<d(LL(d′, d) ∩ TRf (ϕ)), the set of past

requests of d in L, denoted by p-REQL(d), as
⋃
d′∈D>d(LL(d, d′) ∩ TRp(ϕ)), and

the set of requests of d in L, denoted by REQL(d), as f-REQL(d) ∪ p-REQL(d).
We denote by REQϕ the class of all sets of requests, i.e., REQϕ = {R | R =

REQL(d) for some pLISϕ L and d ∈ DL}. We have that |REQϕ| ≤ 2|Cl(ϕ)| ≤ 22·|ϕ|+2.
An existential request of ϕ is a temporal request of ϕ of one the following forms:

〈A〉ψ, 〈A〉ψ, 〈Ax〉ψ, 〈Ax〉ψ, neg([Ay])ψ, and neg([Ay])ψ, for some ψ. A univer-
sal request of ϕ is a temporal request of ϕ that is not an existential one. Let L =
〈D,L, δ,X ,Y〉 be a pLISϕ and d ∈ D. We define ∃-REQL(d) = {ψ ∈ REQL(d) |
ψ is an existential request of ϕ} and ∀-REQL(d) = REQL(d) \ ∃-REQL(d).

For ψ ∈ ∃-REQL(d), we say that ψ is fulfilled in (L, d) by d′ ∈ D if, and only if,
one of the following holds:

– ψ = 〈A〉ψ′ for some ψ′ and ψ′ ∈ L([d, d′]),
– ψ = 〈A〉ψ′ for some ψ′ and ψ′ ∈ L([d′, d]),
– ψ = 〈Ax〉ψ′ for some ψ′, ψ′ ∈ L([d, d′]), and δ(d, d′) ≤ X ,
– ψ = 〈Ax〉ψ′ for some ψ′, ψ′ ∈ L([d′, d]), and δ(d′, d) ≤ X ,
– ψ = neg([Ay]ψ′) for some ψ′, neg(ψ′) ∈ L([d, d′]), and δ(d, d′) ≤ Y ,
– ψ = neg([Ay]ψ′) for some ψ′, neg(ψ′) ∈ L([d′, d]), and δ(d′, d) ≤ Y .

ψ is fulfilled in (L, d) if and only if there is d′ such that ψ is fulfilled in (L, d) by d′.
For ψ ∈ ∀-REQL(d), we say that ψ is fulfilled in (L, d) if, and only if, one of the

following holds:
– ψ = [A]ψ′ for some ψ′ and ψ′ ∈ L([d, d′]) for every d′ ∈ D>d,
– ψ = [A]ψ′ for some ψ′ and ψ′ ∈ L([d′, d]) for every d′ ∈ D<d,
– ψ = [Ay]ψ′ for some ψ′ and ψ′ ∈ L([d, d′]) for every d′ ∈ D>d with δ(d, d′) ≤ Y ,
– ψ = [Ay]ψ′ for some ψ′ and ψ′ ∈ L([d′, d]) for every d′ ∈ D<d with δ(d′, d) ≤ Y ,
– ψ = neg(〈Ax〉ψ′) for some ψ′ and neg(ψ′) ∈ L([d, d′]) for every d′ ∈ D>d with
δ(d, d′) ≤ X ,

– ψ = neg(〈Ax〉ψ′) for some ψ′ and neg(ψ′) ∈ L([d′, d]) for every d′ ∈ D>d with
δ(d′, d) ≤ X .

d is ∃-fulfilled in L if, and only if, every ψ ∈ ∃-REQL(d) is fulfilled; d is ∀-fulfilled in
L if, and only if, every ψ ∈ ∀-REQL(d) is fulfilled; d is fulfilled in L if, and only if, it
is both ∃- and ∀-fulfilled in L.

An existentially fulfilling (resp., universally fulfilling, fulfilling) pLISϕ, aka ∃-pLISϕ
(resp., ∀-pLISϕ, ∃∀-pLISϕ), is a pLISϕ L such that every d ∈ DL is ∃-fulfilled (resp.,
∀-fulfilled, fulfilled) in it.

Proposition 2. ϕ is satisfiable if and only if there exists a ∃∀-pLISϕ, and it is finitely
satisfiable if and only if there exists a finite ∃∀-pLISϕ.

Before showing the decidability of PROMPTd-PNL, we prove a result that will later
come in handy. A set of requests REQL(d) (for a pLISϕL and d ∈ DL) is consistent if
for each ψ ∈ REQL(d), we have that neg(ψ) /∈ REQL(d); otherwise, it is inconsistent.

Proposition 3. Let L be a pLISϕ and d ∈ DL. The following properties hold, unless
REQL(d) is inconsistent:

12

– if D<d 6= ∅, then f-REQL(d) = LL(d′, d) ∩ TRf (ϕ), for any given d′ ∈ D<d,
unless f-REQL(d) is inconsistent;

– if D>d 6= ∅, then p-REQL(d) = LL(d, d′) ∩ TRp(ϕ), for any given d′ ∈ D>d,
unless p-REQL(d) is inconsistent.

4.2 A bounded witness for non-finitely satisfiable formulas

Let L be a pLISϕ and d ∈ DL. A set of essentials of d (in L) is any minimal (with
respect to set inclusion) setE ⊆ DL such that for every ψ ∈ ∃-REQL(d) there is d′ ∈ E
for which ψ is fulfilled in (L, d) by d′. We denote by EL(d) the class containing all
sets of essentials of d in L, i.e., EL(d) = {E ⊆ DL | E is a set of essentials of d in L}.
Intuitively, a set of essentials of d is a collection of points that jointly make d ∃-fulfilled
in L. Clearly EL(d) 6= ∅ if and only if d is ∃-fulfilled in L. We lift this concept to a
higher order: a set of essentials of essentials (or 2nd-order essentials) of d (in L) is any
minimal (with respect to set inclusion) set E2 ⊆ DL such that (i) E1 ⊆ E2 for some
E1 ∈ EL(d) and (ii) for every d′ ∈ E1 there is Ed′ ∈ EL(d′) for which Ed′ ⊆ E2.
We denote by E2L(d) the class containing all sets of 2nd-order essentials of d in L, i.e.,
E2L(d) = {E ⊆ DL | E is a set of 2nd-order essentials of d in L}.

Definition 1 (representative). Let L be a finite pLISϕ and d ∈ DL.
If d /∈ {minDL,maxDL}, then a representative of d in L is a point e ∈ DL

such that REQL(d) = REQL(e), e is fulfilled in L, and so are points in E2, for some
E2 ∈ E2L(e) with E2 ∩ {minD,maxD} = ∅.

If d = minDL (resp., d = maxDL), then a representative of d in L is a point
e ∈ DL that is a representative of d′ in L for some d′ ∈ DL, with p-REQL(d′) =
p-REQL(d) (resp., f-REQL(d′) = f-REQL(d)).

A convex subset of a domain D is a subset D′ of D such that for every d′, d′′ ∈ D′
and d ∈ D, if d′ < d < d′′, then d ∈ D′. A right-convex (resp., left-convex) subset of a
domain D is a convex subset D′ of D such that maxD ∈ D′ (resp., minD ∈ D′).

Given a pLISϕ L and D′ ⊆ DL, we let request-setsL(D′) = {R | REQL(d) =
R for some d ∈ D′}.

Definition 2 (left- and right-periodic pLISϕ). Let L be a finite pLISϕ. A left-period
for L is a left-convex subset E of DL such that, for every d ∈ E, if d is not fulfilled in L
or d = minE, then there is d′ ∈ E>d for which the following holds:
a) d′ is a representative of d in L;
b) request-setsL(E \ {minE}) is equal to request-setsL(E<d′ \ {minE}), which is

equal to request-setsL(E>d′), and there are d′′ ∈ E<d′ \ {minE} and d′′′ ∈ E>d′

such that p-REQL(minE) = p-REQL(d′′) = p-REQL(d′′′);
c) every 〈Ax〉ψ ∈ f-REQL(d′) is fulfilled in (L, d′) by a point belonging to E.
A right-period for L is defined symmetrically.

L is periodic if, and only if, there exist both a left- and a right-period for it.

Definition 3 (ϕ-witness). A ϕ-witness is a finite, periodic ∀-pLISϕ L, such that every
d ∈ DL \ (E ∪ F) is fulfilled in L, where E and F are, respectively, a left- and a
right-period for L, with E ∩ F = ∅ and DL \ (E ∪ F) 6= ∅.

13

Lemma 9. An infinite ∃∀-pLISϕ L = 〈D,L, δ,X ,Y〉 exists if and only if a ϕ-witness
L′ = 〈D′,L′, δ′,X ′ ,Y ′〉 exists.

Thanks to the previous lemma, we can reduce the search for an infinite model for a
formula to the search for a finite witness. However, since such a finite witness can be
arbitrarily large, the search space is still infinite. In what follows, we provide a bound
on the size of the finite witness, thus obtaining a finite search space. Decidability of
PROMPTd-PNL immediately follows.

Let Bϕ = |REQϕ| · (2 · |Cl(ϕ)|2 + 2 · |Cl(ϕ)|) + |REQϕ| · |Cl(ϕ)|+ |Cl(ϕ)|.

Lemma 10. Let L = 〈D,L, δ,X ,Y〉 be a ϕ-witness, E and F being, respectively, a
left- and a right-period for it. If |E| > Bϕ (resp., |F| > Bϕ, |D \ (E ∪ F)| > Bϕ), then
there is a ϕ-witness L′ = 〈D′,L′, δ′,X ′,Y ′〉 with |D′| = |D| − 1.

The size of a pLISϕ L is the size of the underlying domain DL. The following
corollary immediately follows from the above lemma.

Corollary 1 (small model property). A ϕ-witness exists if and only if there is one of
size at most 3 · Bϕ ≤ 3 · [22·|ϕ|+2 · (2 · (2 · |ϕ|+ 2)2 + 2 · (2 · |ϕ|+ 2)) + 22·|ϕ|+2 · (2 ·
|ϕ|+ 2) + (2 · |ϕ|+ 2)].

Theorem 3. The satisfiability problem for PROMPTd-PNL is NEXPTIME-complete.

5 Conclusions

In this paper, we have studied the problem of enriching the well-known propositional
logic of temporal neighborhood PNL with support for prompt-liveness specifications.
We first proved that the logic obtained from PNL by introducing “prompt” versions
of its modalities with no restriction on the use of bounding variables, that we call
PROMPT-PNL, is undecidable. Then, we showed that decidability can be recovered
by introducing a partition of bounding variables into two classes, one for the existential
modalities, the other for the universal ones. The satisfiability problem for the resulting
logic, named PROMPTd-PNL, is indeed NEXPTIME-complete.

The work done can be further developed in various directions.
First, we are interested in identifying the minimum number of bounding variables

that suffice to make PROMPT-PNL undecidable. We believe it possible to prove that
when the set of variables is small enough, e.g., when it includes two bounding vari-
ables only, the logic is still expressive enough to capture some meaningful promptness
conditions and remains decidable.

We also aim at investigating the more powerful setting of parametric extensions of
PNL. Parametric PNL can be viewed as a natural generalization of PROMPT-PNL, as
parametric modalities allow one to express both lower and upper bounds on the delay
with which a request is fulfilled (PROMPT-PNL only copes with the latter).

Last but not least, we are interested in comparing the expressiveness of the logics
PROMPT-PNL and PROMPTd-PNLwith that of metric PNL, that is, the metric extension
of PNL introduced and systematically studied in [7].

14

Acknowledgements. The authors acknowledge the support from the Italian GNCS
project Logics, automata, and games for auto-adaptive systems. In addition, Dario Della
Monica and Aniello Murano acknowledge the support from the POR Campania project
Strategic reasoning for multi-agent systems.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM
26(11), 832–843 (1983)

2. Allen, J.F.: Towards a general theory of action and time. Artificial Intelligence 23(2), 123–
154 (1984)

3. Almagor, S., Hirshfeld, Y., Kupferman, O.: Promptness in omega-regular automata. In:
ATVA. LNCS, vol. 6252, pp. 22–36. Springer (2010)

4. Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for “model mea-
suring”. ACM Trans. Comput. Log. 2(3), 388–407 (2001), http://doi.acm.org/10.
1145/377978.377990

5. Aminof, B., Murano, A., Rubin, S., Zuleger, F.: Prompt Alternating-Time Epistemic Logics.
In: Baral, C., Delgrande, J.P., Wolter, F. (eds.) Proc. of the 15th KR. pp. 258–267. AAAI
Press (2016)

6. Bojańczyk, M., Colcombet, T.: Bounds in ω-regularity. In: LICS. pp. 285–296. IEEE Com-
puter Society (2006)

7. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Metric propo-
sitional neighborhood interval logics on natural numbers. Software and Systems Modeling
(SoSyM) 12(2), 245–264 (2013)

8. Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood
logics: Expressiveness, decidability, and undecidable extensions. Ann. Pure Appl. Logic
161(3), 289–304 (2009), http://dx.doi.org/10.1016/j.apal.2009.07.003

9. Chatterjee, K., Henzinger, T.A., Horn, F.: Finitary winning in ω-regular games. ACM Trans-
actions on Computational Logic 11(1) (2009)

10. Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Interval temporal logics: a
journey. Bulletin of the European Association for Theoretical Computer Science 105, 73–99
(2011)

11. Della Monica, D., Montanari, A., Murano, A., Sala, P.: Prompt interval temporal
logic (extended version) (2016), available at http://wpage.unina.it/dario.
dellamonica/techrep/promptPNL_ext.pdf

12. Della Monica, D., Montanari, A., Sala, P.: The importance of the past in interval temporal
logics: the case of Propositional Neighborhood Logic. In: Logic Programs, Norms and Ac-
tion - Essays in Honor of Marek J. Sergot on the Occasion of His 60th Birthday, LNCS, vol.
7360, pp. 79–102. Springer Berlin / Heidelberg (2012)

13. Fijalkow, N., Zimmermann, M.: Cost-Parity and Cost-Streett Games. In: FSTTCS. LIPIcs,
vol. 18, pp. 124–135 (2012)

14. Gennari, R., Tonelli, S., Vittorini, P.: An AI-based process for generating games from flat
stories. In: Proc. of the 33rd SGAI. pp. 337–350 (2013)

15. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM 38(4),
935–962 (1991), http://doi.acm.org/10.1145/115234.115351

16. Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal Methods in
System Design 34(2), 83–103 (2009)

17. Laban, S., El-Desouky, A.: RISMA: A rule-based interval state machine algorithm for alerts
generation, performance analysis and monitoring real-time data processing. In: Proc. of the
EGU General Assembly 2013. Geophysical Research Abstracts, vol. 15 (2013)

http://doi.acm.org/10.1145/377978.377990
http://doi.acm.org/10.1145/377978.377990
http://dx.doi.org/10.1016/j.apal.2009.07.003
http://wpage.unina.it/dario.dellamonica/techrep/promptPNL_ext.pdf
http://wpage.unina.it/dario.dellamonica/techrep/promptPNL_ext.pdf
http://doi.acm.org/10.1145/115234.115351

15

18. Lodaya, K., Parikh, R., Ramanujam, R., Thiagarajan, P.: A logical study of distributed
transition systems. Information and Computation 119(1), 91–118 (1995), http://www.
sciencedirect.com/science/article/pii/S0890540185710784

19. Mogavero, F., Murano, A., Sorrentino, L.: On promptness in parity games. In: Proc. of the
19th LPAR. LNCS, vol. 8312, pp. 601–618. Springer (2013)

20. Moszkowski, B.: Reasoning about digital circuits. Tech. rep. stan-cs-83-970, Dept. of Com-
puter Science, Stanford University, Stanford, CA (1983)

21. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium
on Foundations of Computer Science (FOCS). pp. 46–57. IEEE Computer Society (1977)

22. Pratt-Hartmann, I.: Temporal prepositions and their logic. Artificial Intelligence 166(1-2),
1–36 (2005)

23. Zhou, C., Hansen, M.R.: Duration Calculus: A formal approach to real-time systems. EATCS
Monographs in Theoretical Computer Science, Springer (2004)

24. Zimmermann, M.: Optimal bounds in parametric LTL games. Theor. Comput. Sci. 493, 30–
45 (2013), http://dx.doi.org/10.1016/j.tcs.2012.07.039

http://www.sciencedirect.com/science/article/pii/S0890540185710784
http://www.sciencedirect.com/science/article/pii/S0890540185710784
http://dx.doi.org/10.1016/j.tcs.2012.07.039

	Prompt Interval Temporal Logic
	Introduction
	The logic PROMPT-PNL
	Undecidability of PROMPT-RPNL
	Decidability of PROMPT-d-PNL
	Prompt labeled interval structures
	A bounded witness for non-finitely satisfiable formulas

	Conclusions

