Skip to main content

Prompt Interval Temporal Logic

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10021))

Included in the following conference series:

  • 685 Accesses

Abstract

Interval temporal logics are expressive formalisms for temporal representation and reasoning, which use time intervals as primitive temporal entities. They have been extensively studied for the past two decades and successfully applied in AI and computer science. Unfortunately, they lack the ability of expressing promptness conditions, as it happens with the commonly-used temporal logics, e.g., LTL: whenever we deal with a liveness request, such as “something good eventually happens”, there is no way to impose a bound on the delay with which it is fulfilled. In the last years, such an issue has been addressed in automata theory, game theory, and temporal logic. In this paper, we approach it in the interval temporal logic setting. First, we introduce PROMPT- PNL, a prompt extension of the well-studied interval temporal logic PNL, and we prove the undecidability of its satisfiability problem; then, we show how to recover decidability (NEXPTIME-completeness) by imposing a natural syntactic restriction on it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  2. Allen, J.F.: Towards a general theory of action and time. Artif. Intell. 23(2), 123–154 (1984)

    Article  MATH  Google Scholar 

  3. Almagor, S., Hirshfeld, Y., Kupferman, O.: Promptness in \({\omega }\)-regular automata. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 22–36. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15643-4_4

    Chapter  Google Scholar 

  4. Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for “model measuring”. ACM Trans. Comput. Log. 2(3), 388–407 (2001). http://doi.acm.org/10.1145/377978.377990

    Article  MathSciNet  MATH  Google Scholar 

  5. Aminof, B., Murano, A., Rubin, S., Zuleger, F.: Prompt alternating-time epistemic logics. In: Baral, C., Delgrande, J.P., Wolter, F. (eds.) Proceedings of the 15th KR, pp. 258–267. AAAI Press (2016)

    Google Scholar 

  6. Bojańczyk, M., Colcombet, T.: Bounds in \(\omega \)-regularity. In: LICS, pp. 285–296. IEEE Computer Society (2006)

    Google Scholar 

  7. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Metric propositional neighborhood interval logics on natural numbers. Softw. Syst. Model. (SoSyM) 12(2), 245–264 (2013)

    Article  Google Scholar 

  8. Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood logics: expressiveness, decidability, and undecidable extensions. Ann. Pure Appl. Logic 161(3), 289–304 (2009). http://dx.doi.org/10.1016/j.apal.2009.07.003

    Article  MathSciNet  MATH  Google Scholar 

  9. Chatterjee, K., Henzinger, T.A., Horn, F.: Finitary winning in \(\omega \)-regular games. ACM Trans. Comput. Logic 11(1) (2009)

    Google Scholar 

  10. Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Interval temporal logics: a journey. Bull. Eur. Assoc. Theoret. Comput. Sci. 105, 73–99 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Della Monica, D., Montanari, A., Murano, A., Sala, P.: Prompt interval temporal logic (extended version) (2016). http://wpage.unina.it/dario.dellamonica/techrep/promptPNL_ext.pdf

  12. Della Monica, D., Montanari, A., Sala, P.: The importance of the past in interval temporal logics: the case of propositional neighborhood logic. In: Artikis, A., Craven, R., Kesim Çiçekli, N., Sadighi, B., Stathis, K. (eds.) Logic Programs, Norms and Action. LNCS (LNAI), vol. 7360, pp. 79–102. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29414-3_6

    Chapter  Google Scholar 

  13. Fijalkow, N., Zimmermann, M.: Cost-Parity and Cost-Streett Games. In: FSTTCS. LIPIcs, vol. 18, pp. 124–135 (2012)

    Google Scholar 

  14. Gennari, R., Tonelli, S., Vittorini, P.: An AI-based process for generating games from flat stories. In: Proceedings of the 33rd SGAI, pp. 337–350 (2013)

    Google Scholar 

  15. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM 38(4), 935–962 (1991). http://doi.acm.org/10.1145/115234.115351

    Article  MathSciNet  MATH  Google Scholar 

  16. Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal Methods Syst. Des. 34(2), 83–103 (2009)

    Article  MATH  Google Scholar 

  17. Laban, S., El-Desouky, A.: RISMA: a rule-based interval state machine algorithm for alerts generation, performance analysis and monitoring real-time data processing. In: Proceedings of the EGU General Assembly 2013. Geophysical Research Abstracts, vol. 15 (2013)

    Google Scholar 

  18. Lodaya, K., Parikh, R., Ramanujam, R., Thiagarajan, P.: A logical study of distributed transition systems. Inf. Comput. 119(1), 91–118 (1995). http://www.sciencedirect.com/science/article/pii/S0890540185710784

    Article  MathSciNet  MATH  Google Scholar 

  19. Mogavero, F., Murano, A., Sorrentino, L.: On promptness in parity games. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 601–618. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5_40

    Chapter  Google Scholar 

  20. Moszkowski, B.: Reasoning about digital circuits. Technical report. stan-cs-83-970, Dept. of Computer Science, Stanford University, Stanford, CA (1983)

    Google Scholar 

  21. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science (FOCS), pp. 46–57. IEEE Computer Society (1977)

    Google Scholar 

  22. Pratt-Hartmann, I.: Temporal prepositions and their logic. Artif. Intell. 166(1–2), 1–36 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou, C., Hansen, M.R.: Duration calculus: a formal approach to real-time systems. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2004)

    Google Scholar 

  24. Zimmermann, M.: Optimal bounds in parametric LTL games. Theor. Comput. Sci. 493, 30–45 (2013). http://dx.doi.org/10.1016/j.tcs.2012.07.039

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Italian GNCS project Logics, automata, and games for auto-adaptive systems. In addition, Dario Della Monica and Aniello Murano acknowledge the support from the POR Campania project Strategic reasoning for multi-agent systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Della Monica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Della Monica, D., Montanari, A., Murano, A., Sala, P. (2016). Prompt Interval Temporal Logic. In: Michael, L., Kakas, A. (eds) Logics in Artificial Intelligence. JELIA 2016. Lecture Notes in Computer Science(), vol 10021. Springer, Cham. https://doi.org/10.1007/978-3-319-48758-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48758-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48757-1

  • Online ISBN: 978-3-319-48758-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics