Skip to main content

Pakota: A System for Enforcement in Abstract Argumentation

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10021))

Included in the following conference series:

Abstract

In this paper we describe Pakota, a system implementation that allows for solving enforcement problems over argumentation frameworks. Via harnessing Boolean satisfiability (SAT) and maximum satisfiability (MaxSAT) solvers, Pakota implements algorithms for extension and status enforcement under various central AF semantics, covering a range of NP-complete—via direct MaxSAT encodings—and \(\mathrm{\Sigma }_{2}^{P}\)-complete—via MaxSAT-based counterexample-guided abstraction refinement—enforcement problems. We overview the algorithmic approaches implemented in Pakota, and describe in detail the system architecture, features, interfaces, and usage of the system. Furthermore, we present an empirical evaluation on the impact of the choice of MaxSAT solvers on the scalability of the system, and also provide benchmark generators for extension and status enforcement.

Work funded by Academy of Finland, grants 251170 COIN, 276412, and 284591; and Research Funds of the University of Helsinki.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality constraints of bounded size. In: Proceedings of IJCAI, pp. 2677–2683. AAAI Press/IJCAI (2015)

    Google Scholar 

  2. Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores in MaxSAT. In: Proceedings of the IJCAI, pp. 283–289. AAAI Press/IJCAI (2015)

    Google Scholar 

  3. Ansótegui, C., Gabàs, J.: Solving (weighted) partial MaxSAT with ILP. In: Gomes, E., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 403–409. Springer, Heidelberg (2013)

    Google Scholar 

  4. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of IJCAI, pp. 399–404. AAAI Press/IJCAI (2009)

    Google Scholar 

  5. Audemard, G., Simon, L.: GLUCOSE 2.1: aggressive - but reactive - clause database management, dynamic restarts. In: Pragmatics of SAT (Workshop of SAT 2012) (2012)

    Google Scholar 

  6. Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 118–126. Springer, Heidelberg (2012)

    Google Scholar 

  7. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011)

    Article  Google Scholar 

  8. Baumann, R.: What does it take to enforce an argument? minimal change in abstract argumentation. In: Proceedings of ECAI. Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 127–132. IOS Press (2012)

    Google Scholar 

  9. Baumann, R.: Normal and strong expansion equivalence for argumentation frameworks. Artif. Intell. 193, 18–44 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baumann, R., Brewka, G.: AGM meets abstract argumentation: Expansion and revision for Dung frameworks. In: Proceedings of IJCAI, pp. 2734–2740. AAAI Press/IJCAI (2015)

    Google Scholar 

  11. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: Proceedings of NMR, pp. 59–64 (2004)

    Google Scholar 

  12. Bisquert, P., Cayrol, C., Saint-Cyr, F.D., Lagasquie-Schiex, M.-C.: Enforcement in argumentation is a kind of update. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS (LNAI), vol. 8078, pp. 30–43. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40381-1_3

    Chapter  Google Scholar 

  13. Cerutti, F., Dunne, P.E., Giacomin, M., Vallati, M.: Computing preferred extensions in abstract argumentation: A SAT-based approach. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2013. LNCS (LNAI), vol. 8306, pp. 176–193. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54373-9_12

    Chapter  Google Scholar 

  14. Cerutti, F., Giacomin, M., Vallati, M.: ArgSemSAT: Solving argumentation problems using SAT. In: Proceedings of COMMA. Frontiers in Artificial Intelligence and Applications, vol. 266, pp. 455–456. IOS Press (2014)

    Google Scholar 

  15. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Clarke, E.M., Gupta, A., Strichman, O.: SAT-based counterexample-guided abstraction refinement. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 23(7), 1113–1123 (2004)

    Article  Google Scholar 

  17. Coste-Marquis, S., Konieczny, S., Mailly, J., Marquis, P.: Extension enforcement in abstract argumentation as an optimization problem. In: Proceedings of IJCAI, pp. 2876–2882. AAAI Press (2015)

    Google Scholar 

  18. Coste-Marquis, S., Konieczny, S., Mailly, J., Marquis, P.: On the revision of argumentation systems: Minimal change of arguments statuses. In: Proceedings of KR, pp. 52–61. AAAI Press (2014)

    Google Scholar 

  19. Coste-Marquis, S., Konieczny, S., Mailly, J.-G., Marquis, P.: A translation-based approach for revision of argumentation frameworks. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 397–411. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11558-0_28

    Google Scholar 

  20. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39071-5_13

    Chapter  Google Scholar 

  21. Delobelle, J., Konieczny, S., Vesic, S.: On the aggregation of argumentation frameworks. In: Proceedings of IJCAI, pp. 2911–2917. AAAI Press/IJCAI (2015)

    Google Scholar 

  22. Diller, M., Haret, A., Linsbichler, T., Rümmele, S., Woltran, S.: An extension-based approach to belief revision in abstract argumentation. In: Proceedings of IJCAI, pp. 2926–2932. AAAI Press/IJCAI (2015)

    Google Scholar 

  23. Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dvořák, W., Järvisalo, M., Wallner, J.P., Woltran, S.: Complexity-sensitive decision procedures for abstract argumentation. Artif. Intell. 206, 53–78 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24605-3_37

    Chapter  Google Scholar 

  26. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumentation frameworks. Argum. Comput. 1(2), 147–177 (2010)

    Article  MATH  Google Scholar 

  27. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: A modular MaxSAT solver,. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Heidelberg (2014). doi:10.1007/978-3-319-09284-3_33

    Google Scholar 

  28. Morgado, A., Ignatiev, A., Marques-Silva, J.: MSCG: Robust core-guided MaxSAT solving. J. Satisf., Bool. Model. Comput. 9, 129–134 (2015)

    MathSciNet  Google Scholar 

  29. Niskanen, A., Wallner, J.P., Järvisalo, M.: Optimal status enforcement in abstract argumentation. In: Proceedings of IJCAI. AAAI Press/IJCAI (2016)

    Google Scholar 

  30. Nofal, S., Atkinson, K., Dunne, P.E.: Algorithms for decision problems in argument systems under preferred semantics. Artif. Intell. 207, 23–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nofal, S., Atkinson, K., Dunne, P.E.: Looking-ahead in backtracking algorithms for abstract argumentation. Int. J. Approx. Reason. 78, 265–282 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Saikko, P., Berg, J., Järvisalo, M.: LMHS: A SAT-IP hybrid MaxSAT solver. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40970-2_34

    Chapter  Google Scholar 

  33. Thimm, M., Villata, S., Cerutti, F., Oren, N., Strass, H., Vallati, M.: Summary report of the first international competition on computational models of argumentation. AI Mag. 37(1), 102 (2016)

    Google Scholar 

  34. Wallner, J.P., Niskanen, A., Järvisalo, M.: Complexity results and algorithms for extension enforcement in abstract argumentation. In: Proceedings of the AAAI, pp. 1088–1094. AAAI Press (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Niskanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Niskanen, A., Wallner, J.P., Järvisalo, M. (2016). Pakota: A System for Enforcement in Abstract Argumentation. In: Michael, L., Kakas, A. (eds) Logics in Artificial Intelligence. JELIA 2016. Lecture Notes in Computer Science(), vol 10021. Springer, Cham. https://doi.org/10.1007/978-3-319-48758-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48758-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48757-1

  • Online ISBN: 978-3-319-48758-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics