Abstract
Temporal Here and There (THT) constitutes the logical foundations of Temporal Equilibrium Logic. Nevertheless, it has never been studied in detail since results about axiomatisation and interdefinability of modal operators remained unknown. In this paper we provide a sound and complete axiomatic system for THT together with several results on interdefinability of modal operators.
Special acknowledgement is heartly granted to Pedro Cabalar and Luis Fariñas del Cerro for their feedback on a preliminary version of our paper. Martín Diéguez was supported by the Centre international de mathématiques et d’informatique (contract ANR-11-LABX-0040-CIMI).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguado, F., Cabalar, P., Pearce, D., Pérez, G., Vidal, C.: A denotational semantics for equilibrium logic. TPLP 15(4–5), 620–634 (2015)
Cabalar, P., Diéguez, M.: Strong equivalence of non-monotonic temporal theories. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR 2014), Vienna (2014)
Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic programs. Theory Pract. Log. Program. 7(6), 745–759 (2007)
Cabalar, P., Pérez Vega, G.: Temporal equilibrium logic: a first approach. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 241–248. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75867-9_31
Cabalar, P., Diéguez, M., Vidal, C.: An infinitary encoding of temporal equilibrium logic. TPLP 15(4–5), 666–680 (2015)
Dalen, D.V.: Intuitionistic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 166, pp. 225–339. Springer, Netherlands (1986)
van Dalen, D.: Logic and Structure. Universitext. Springer, Heidelberg (1989)
Fariñas del Cerro, L., Herzig, A., Su, E.I.: Epistemic equilibrium logic. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, 25–31 July 2015, pp. 2964–2970 (2015)
Servi, G.F.: Axiomatisations for some intuitionistic modal logics. Rend. Sem. Mat. Univers. Polit. Torino. 42, 179–194 (1984). Torino, Italy
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the 5th International Conference on Logic Programming (ICLP 1988), Seattle, pp. 1070–1080 (1988)
Goldblatt, R.: Logics of time and computation. No. 7 in CSLI Lecture Notes, Center for the Study of Language and Information, Stanford, 2 edn. (1992)
Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse, Deütsche Akademie der Wissenschaften zu Berlin, Mathematisch-Naturwissenschaftliche Klasse (1930)
Kamp, H.: Tense logic and the theory of linear order. Ph.D. thesis, University of California, Los Angeles (1968)
Kurtonina, N., de Rijke, M.: Bisimulations for temporal logic. J. Log. Lang. Inf. 6(4), 403–425 (1997)
Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for logic programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 188–200. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72200-7_17
Lukasiewicz, J.: Die logik und das grundlagenproblem. Les Entreties de Zürich sur les Fondaments et la Méthode des Sciences Mathématiques 12(6–9), 82–100 (1938)
Marek, V., Truszczyński, M.: Stable Models and an Alternative Logic Programming Paradigm, pp. 169–181. Springer, Heidelberg (1999)
Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)
Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1–2), 3–41 (2006)
Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer set programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 546–560. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89982-2_46
Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, Providence, pp. 46–57 (1977)
Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic. Ph.D. thesis, University of Edinburgh (1994). http://homepages.inf.ed.ac.uk/als/Research/thesis.ps.gz
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Balbiani, P., Diéguez, M. (2016). Temporal Here and There. In: Michael, L., Kakas, A. (eds) Logics in Artificial Intelligence. JELIA 2016. Lecture Notes in Computer Science(), vol 10021. Springer, Cham. https://doi.org/10.1007/978-3-319-48758-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-48758-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48757-1
Online ISBN: 978-3-319-48758-8
eBook Packages: Computer ScienceComputer Science (R0)