Skip to main content

A Network Performance Analysis of LoRa Modulation for LPWAN Sensor Devices

  • Conference paper
  • First Online:
Ubiquitous Computing and Ambient Intelligence (IWAAL 2016, AmIHEALTH 2016, UCAmI 2016)

Abstract

The rise in low power devices has created a necessity for connectivity among systems, in some cases across great geographic lengths. Current wireless communication protocols for these devices cover only small areas or require several hops to communicate. LPWAN have surfaced to cover this necessity offering greater transmission range in energy efficient protocols. Among these can we find the LoRa technology, offering wide spread spectrum modulation for WSN. The most common implementations of LoRa work at 868 MHz frequency range, and there is few information for other frequency bands. Given the nature of this modulation, it is of great interest to analyse lower frequencies. In this article a direct comparison of LoRa in the 868 MHz and 433 MHz will be done. Additionally, several parameters will be modified to find the best configuration available. This will help validate the possibility of transmitting at longer distances than current 868 MHz implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Internetworking technology handbook – DocWiki. http://docwiki.cisco.com/wiki/Internetworking_Technology_Handbook#WAN_Technologies

  2. Sanchez-Iborra, R., Cano, M.-D.: State of the art in LP-WAN solutions for industrial IoT services. Sensors 16, 708 (2016)

    Article  Google Scholar 

  3. Margelis, G., Piechocki, R., Kaleshi, D., Thomas, P.: Low throughput networks for the IoT: lessons learned from industrial implementations. In: Proceedings of IEEE World Forum Internet Things, WF-IoT 2015, pp. 181–186 (2016)

    Google Scholar 

  4. Andreadou, N., Guardiola, M., Fulli, G.: Telecommunication technologies for smart grid projects with focus on smart metering applications. Energies 9, 375 (2016)

    Article  Google Scholar 

  5. Centenaro, M., Vangelista, L., Zanella, A., Zorzi, M.: Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE Wirel. Commun. 1–7 (2015, Forthcoming)

    Google Scholar 

  6. Petäjäjärvi, J., Mikhaylov, K., Roivainen, A., Hänninen, T., Pettissalo, M.: On the coverage of LPWANs: range evaluation and channel attenuation model for LoRa technology. In: 2015 14th International Conference on ITS Telecommunication (ITST), pp. 55–59 (2015)

    Google Scholar 

  7. Aref, M., Sikora, A.: Free space range measurements with Semtech LoRa technology. In: 2014 2nd International Symposium on Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems, IDAACS-SWS 2014, pp. 19–23 (2014)

    Google Scholar 

  8. RN2483 - Wireless modules. http://www.microchip.com/wwwproducts/en/RN2483

  9. SX1276 137 MHz to 1020 MHz low power long range transceiver|semtech. http://www.semtech.com/wireless-rf/rf-transceivers/sx1276/

  10. Vazquez-gallego, F., Member, S.: Goodbye, ALOHA! pp. 2029–2044 (2016)

    Google Scholar 

  11. Stočes, M., Vaněk, J., Masner, J., Pavlík, J., Things, I., Agriculture, P., Agriculture, S.: Agris on-line papers in economics and informatics internet of things (IoT) in agriculture - selected aspects, vol. VIII, pp. 83–89 (2016)

    Google Scholar 

  12. Pham, C.: Deploying a pool of long-range wireless image sensor with shared activity time. In: 2015 IEEE 11th International Conference on Wireless & Mobile Networks Communication, WiMob 2015, pp. 667–674 (2015)

    Google Scholar 

  13. Semtech: LoRaTM modulation basics, pp. 1–26 (2015)

    Google Scholar 

Download references

Acknowledgments

Trasviña-Moreno would like to thank the Consejo Nacional de Ciencia y Tecnología (CONACYT) of México for providing the scholarship for his Ph.D. In addition, the authors would like to acknowledge the Centro de Investigación Científica de Educación Superior de Ensenada of México for project Sistema Multipropósito para Monitoreo del Medio Ambiente, and the Ministerio de Economía y Competitividad of Spain for projects Memory Lane (ref. TIN2013-45312-R) and Movilidad Verde Inteligente (ref. RTC-2014-2425-4) which this proposal is part of.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Trasviña-Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Trasviña-Moreno, C.A., Blasco, R., Casas, R., Asensio, Á. (2016). A Network Performance Analysis of LoRa Modulation for LPWAN Sensor Devices. In: García, C., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds) Ubiquitous Computing and Ambient Intelligence. IWAAL AmIHEALTH UCAmI 2016 2016 2016. Lecture Notes in Computer Science(), vol 10070. Springer, Cham. https://doi.org/10.1007/978-3-319-48799-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48799-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48798-4

  • Online ISBN: 978-3-319-48799-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics