Abstract
In this work we propose a new framework for extracting deformable clothing items from images by using a three stage global-local fitting procedure. First, a set of initial segmentation templates are generated from a handcrafted database. Then, each template initiates an object extraction process by a global alignment of the model, followed by a local search minimizing a measure of the misfit with respect to the potential boundaries in the neighborhood. Finally, the results provided by each template are aggregated, with a global fitting criterion, to obtain the final segmentation. The method is validated on the Fashionista database and on a new database of manually segmented images. Our method compares favorably with the Paper Doll clothing parsing and with the recent GrabCut on One Cut foreground extraction method. We quantitatively analyze each component, and show examples of both successful segmentation and difficult cases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
Chen, H., Gallagher, A., Girod, B.: Describing clothing by semantic attributes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 609–623. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33712-3_44
Chen, Q., Huang, J., Feris, R., Brown, L.M., Dong, J., Yan, S.: Deep domain adaptation for describing people based on fine-grained clothing attributes. In: CVPR, June 2015
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)
Di, W., Wah, C., Bhardwaj, A., Piramuthu, R., Sundaresan, N.: Style finder: fine-grained clothing style detection and retrieval. In: IEEE International Workshop on Mobile Vision, CVPR, pp. 8–13, June 2013
Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. arXiv (2014)
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)
Kalantidis, Y., Kennedy, L., Li, L.J.: Getting the look: clothing recognition and segmentation for automatic product suggestions in everyday photos. In: ACM International Conference on Multimedia Retrieval, pp. 105–112 (2013)
Kaufman, L., Rousseeuw, P.: Clustering by means of meds. In: Dodge, Y. (ed.) Statistical Data Analysis Based on the L1-Norm and Related Methods, pp. 405–416. North-Holland, Amsterdam (1987)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Bartlett, P., Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) NIPS, vol. 25, pp. 1106–1114 (2012)
Liu, S., Feng, J., Song, Z., Zhang, T., Lu, H., Xu, C., Yan, S.: Hi, magic closet, tell me what to wear! In: ACM Multimedia, pp. 619–628. ACM (2012)
Liu, S., Song, Z., Liu, G., Xu, C., Lu, H., Yan, S.: Street-to-shop: cross-scenario clothing retrieval via parts alignment and auxiliary set. In: CVPR, pp. 3330–3337 (2012)
M. Hadi, K., Xufeng, H., Svetlana, L., Alexander, C.B., Tamara, L.B.: Where to buy it: matching street clothing photos in online shops. In: ICCV (2015)
Rother, C., Kolmogorov, V., Blake, A.: GrabCut - interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23, 309–314 (2004)
Simo-Serra, E., Fidler, S., Moreno-Noguer, F., Urtasun, R.: Neuroaesthetics in fashion: modeling the perception of fashionability. In: CVPR (2015)
Song, Z., Wang, M., sheng Hua, X., Yan, S.: Predicting occupation via human clothing and contexts. In: ICCV, pp. 1084–1091. IEEE Computer Society, Washington, DC (2011)
Tang, M., Gorelick, L., Veksler, O., Boykov, Y.: Grabcut in one cut. In: ICCV, pp. 1769–1776. IEEE Computer Society, Washington, DC (2013)
Veit, A., Kovacs, B., Bell, S., McAuley, J., Bala, K., Belongie, S.: Learning visual clothing style with heterogeneous dyadic co-occurrences. In: ICCV, Santiago, Chile (2015)
Yamaguchi, K., Hadi, K., Luis, E., Tamara, L.B.: Retrieving similar styles to parse clothing. IEEE TPAMI 37, 1028–1040 (2015)
Yamaguchi, K., Kiapour, M.H., Berg, T.L.: Paper doll parsing: retrieving similar styles to parse clothing items. In: ICCV, Washington, DC, pp. 3519–3526 (2013)
Yang, Y., Ramanan, D.: Articulated human detection with flexible mixtures of parts. IEEE TPAMI 35, 2878–2890 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Yang, L., Rodriguez, H., Crucianu, M., Ferecatu, M. (2016). A Global-Local Approach to Extracting Deformable Fashion Items from Web Images. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9917. Springer, Cham. https://doi.org/10.1007/978-3-319-48896-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-48896-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48895-0
Online ISBN: 978-3-319-48896-7
eBook Packages: Computer ScienceComputer Science (R0)