Abstract
Binary embedding is an effective way for nearest neighbor (NN) search as binary code is storage efficient and fast to compute. It tries to convert real-value signatures into binary codes while preserving similarity of the original data, and most binary embedding methods quantize each projected dimension to one bit (presented as 0/1). As a consequence, it greatly decreases the discriminability of original signatures. In this paper, we first propose a novel quantization strategy triple-bit quantization (TBQ) to solve the problem by assigning 3-bit to each dimension. Then, asymmetric distance (AD) algorithm is applied to re-rank candidates obtained from hamming space for the final nearest neighbors. For simplicity, we call the framework triple-bit quantization with asymmetric distance (TBAD). The inherence of TBAD is combining the best of binary codes and real-value signatures to get nearest neighbors quickly and concisely. Moreover, TBAD is applicable to a wide variety of embedding techniques. Experimental comparisons on BIGANN set show that the proposed method can achieve remarkable improvement in query accuracy compared to original binary embedding methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yahiaoui, I., Hervé, N., Boujemaa, N.: Shape-based image retrieval in botanical collections. In: Proceedings of the 7th PCM 2006, China, 2–4 November 2006, pp. 357–364 (2006)
Megrhi, S., Souidène, W., Beghdadi, A.: Spatio-temporal SURF for human action recognition. In: Huet, B., Ngo, C.-W., Tang, J., Zhou, Z.-H., Hauptmann, Alexander, G., Yan, S. (eds.) PCM 2013. LNCS, vol. 8294, pp. 505–516. Springer, Heidelberg (2013). doi:10.1007/978-3-319-03731-8_47
Chen, S., Wang, T., Wang, J., Li, J., Zhang, Y., Lu, H.: A spatial-temporal-scale registration approach for video copy detection. In: Huang, Y.-M.R., Xu, C., Cheng, K.-S., Yang, J.-F.K., Swamy, M.,N.,S., Li, S., Ding, J.-W. (eds.) PCM 2008. LNCS, vol. 5353, pp. 407–415. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89796-5_42
Albert, G., Florent, P., Yunchao, G., et al.: Asymmetric distances for binary embeddings. IEEE PAMI 36(1), 33–47 (2014)
Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant kernels. In: Proceedings of NIPS, pp. 1509–1517 (2009)
Jégou, H., Tavenard, R., Douze, M., Amsaleg, L.: Searching in one billion vectors: re-rank with source coding. In: IEEE ICASSP, pp. 861–864. IEEE (2011)
Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Proceedings of NIPS (2008)
Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning binary codes. In: Proceedings of IEEE Conference on CVPR, pp. 817–824 (2011)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004)
Xie, H., Gao, K., Zhang, Y., et al.: Pairwise weak geometric consistency for large scale image search. In: Proceedings of the 1st ACM ICMR, pp. 1–8. ACM (2011)
Lei, Z., Yongdong, Z., Richang, H., et al.: Full-space local topology extraction for cross-modal retrieval. IEEE TIP 24(7), 2212–2224 (2015)
Yahiaoui, I., Hervé, N., Boujemaa, N.: Shape-based image retrieval in botanical collections. In: Advances in Multimedia Information Processing – 7th PCM 2006, Hangzhou, China, 2–4 November 2006, pp. 357–364 (2006)
Acknowledgements
This work is supported by the National Nature Science Foundation of China (61303171, 61303251), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA06031000, XDA06010703), Xinjiang Uygur Autonomous Region Science and Technology Project (201230123).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Deng, H., Xie, H., Ma, W., Dai, Q., Chen, J., Lu, M. (2016). Triple-Bit Quantization with Asymmetric Distance for Nearest Neighbor Search. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9917. Springer, Cham. https://doi.org/10.1007/978-3-319-48896-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-48896-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48895-0
Online ISBN: 978-3-319-48896-7
eBook Packages: Computer ScienceComputer Science (R0)