Skip to main content

Scale and Topology Preserving SIFT Feature Hashing

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing - PCM 2016 (PCM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9917))

Included in the following conference series:

  • 2552 Accesses

Abstract

In recent years, content based image retrieval has been concerned because of practical needs on Internet services, especially methods that can improve retrieving speed and precision. Thus, we propose a hashing scheme called Geometry and Topology Preserving Hashing for content based image retrieval. A training process of hashing function involves both of geometric information and topology information is introduced. Compared with state-of-the-art methods, our method gives better precision in experiment on the Oxford Building dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, Y., Zhang, L., Tian, Q.: A prior-free weighting scheme for binary code ranking. IEEE Trans. Multimedia 16(4), 1127–1139 (2014)

    Article  Google Scholar 

  2. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching, pp. 1–8 (2007)

    Google Scholar 

  3. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: Twentieth Symposium on Computational Geometry, vol. 34, pp. 253–262. ACM (2004)

    Google Scholar 

  4. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Found. Comput. Sci. Annu. Symp. 51(1), 117–122 (2006)

    Google Scholar 

  5. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: efficient indexing for high-dimensional similarity search. In: International Conference on Very Large Data Bases, University of Vienna, Austria, September, pp. 950–961 (2007)

    Google Scholar 

  6. Ji, J., Li, J., Yan, S., Zhang, B., Tian, Q.: Super-bit locality-sensitive hashing. Adv. Neural Inf. Process. Syst. 1, 108–116 (2012)

    Google Scholar 

  7. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1092–1104 (2011)

    Article  Google Scholar 

  8. Yu, X., Zhang, S., Liu, B., Zhong, L., Metaxas, D.N.: Large scale medical image search via unsupervised pca hashing, vol. 13, no. 4, pp. 393–398 (2013)

    Google Scholar 

  9. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a Procrustean approach to learning binary codes for large-scale image retrieval. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, vol. 35, pp. 2916–2929. IEEE Computer Society (2011)

    Google Scholar 

  10. Vyshali, S., Subramanyam, M. V., Raajan, K.S.: Geometry preserving image retrieval using normalized scale coding. In: International Conference on Electrical, Electronics, Signals, Communication and Optimization. IEEE (2015)

    Google Scholar 

  11. Zhang, Y., Jia, Z., Chen, T.: Image retrieval with geometry-preserving visual phrases. In: IEEE Conference on Computer Vision & Pattern Recognition, vol. 42, pp. 809–816 (2011)

    Google Scholar 

  12. Jiang, Q.Y., Li, W.J.: Scalable graph hashing with feature transformation. In: International Conference on Artificial Intelligence, vol. 9, pp. 331–337. AAAI Press (2015)

    Google Scholar 

  13. Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised discrete hashing. In: Computer Science, pp. 37–45 (2015)

    Google Scholar 

  14. Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approximate Reasoning 50(7), 969–978 (2009)

    Article  Google Scholar 

  15. Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In: Advances in Neural Information Processing Systems, Conference on Neural Information Processing Systems 2009. Proceedings of a Meeting held 7–10 December 2009, Vancouver, British Columbia, Canada, pp. 1042–1050 (2009)

    Google Scholar 

  16. Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for large-scale search. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2393–2406 (2012)

    Article  Google Scholar 

  17. Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for scalable image retrieval. IEEE Conf. Comput. Vis. Pattern Recogn. 23, 3424–3431 (2010)

    Google Scholar 

  18. Zhang, L., Zhang, Y., Gu, X., Tang, J., Tian, Q.: Scalable similarity search with topology preserving hashing. IEEE Trans. Image Process. Publication IEEE Signal Process. Soc. 23(7), 3025–3039 (2014)

    Article  MathSciNet  Google Scholar 

  19. Zhang, L., Zhang, Y., Tang, J., Gu, X., Li, J., Tian, Q.: Topology preserving hashing for similarity search. ACM International Conference on Multimedia, pp. 123–132. ACM (2013)

    Google Scholar 

  20. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(60), 91–110 (2004)

    Article  Google Scholar 

  21. Bay, H., Tuytelaars, T., Gool, L.V.: Surf: speeded up robust features. Comput. Vis. Image Underst. 110(3), 404–417 (2006)

    Google Scholar 

  22. Luo, J., Gwun, O.: A comparison of SIFT, PCA-SIFT and SURF. Int. J. Image Process. 3(4), 143–152 (2009)

    Google Scholar 

  23. Qian, X., Xue, Y., Yang, X., Tang, Y.Y.: Landmark summarization with diverse viewpoints. IEEE Trans. Circ. Syst. Video Technol. 25(11), 1 (2014)

    Google Scholar 

  24. Yang, X., Qian, X., Xue, Y.: Scalable mobile image retrieval by exploring contextual saliency. IEEE Trans. Image Process Publication IEEE Sig. Process. Soc. 24(6), 1709–1721 (2015)

    Article  MathSciNet  Google Scholar 

  25. Yang, X., Qian, X., Mei, T.: Learning salient visual word for scalable mobile image retrieval. Pattern Recogn. 48(10), 3093–3101 (2015)

    Article  Google Scholar 

  26. Qian, X., Zhao, Y., Han, J.: Image location estimation by salient region matching. IEEE Trans. Image Process. Publication IEEE Sig. Process. Soc. 24(11), 4348–4358 (2015)

    Article  MathSciNet  Google Scholar 

  27. Qian, X., Tan, X., Zhang, Y., Hong, R.: Enhancing sketch-based image retrieval by re-ranking and relevance feedback. IEEE Trans. Image Process. 25(1), 1 (2015)

    MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Program 973 under Grant 2012CB316400, in part by the NSFC under Grant 61373113, Grant 61173109, and Grant 61332018, and in part by Microsoft Research Asia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueming Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kang, C., Zhu, L., Qian, X. (2016). Scale and Topology Preserving SIFT Feature Hashing. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9917. Springer, Cham. https://doi.org/10.1007/978-3-319-48896-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48896-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48895-0

  • Online ISBN: 978-3-319-48896-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics