Abstract
No-reference (NR) image quality assessment (IQA) metrics have attracted great attention in the area of image processing. Since there is no access to the reference images, the generic NR IQA metrics have made less progress than the full-reference and reduced-reference IQA metrics. In this paper, we aim to propose an effective quality-aware feature based on the local quantized pattern (LQP) for quality evaluation. Firstly, a codebook is learned by K-means clustering the LQP descriptors of a corpus of pristine images. Based on the codebook, the LQP descriptors of images are then encoded to derive the quality-aware features. Finally, the image features are mapped to the subjective quality scores using the support vector regression. Experimental results on several public databases indicate the propose method performs highly consistent with the human visual perception.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bovik, A.C.: Automatic prediction of perceptual image and video quality. Proc. IEEE 101(9), 2008–2024 (2013)
Manap, R.A., Shao, L.: Non-distortion-specific no-reference image quality assessment: a survey. Inf. Sci. 301, 141–160 (2015)
Wang, Z., Bovik, A.C.: Reduced-and no-reference image quality assessment. IEEE Signal Process. Mag. 28(6), 29–40 (2011)
Fang, Y., Ma, K., Wang, Z., Lin, W., Fang, Z., Zhai, G.: No-reference quality assessment of contrast-distorted images based on natural scene statistics. IEEE Signal Process. Lett. 22(7), 838–842 (2015)
Li, L., Lin, W., Wang, X., Yang, G., Bahrami, K., Kot, A.C.: No-reference image blur assessment based on discrete orthogonal moments. IEEE Trans. Cybern. 46(1), 39–50 (2016)
Brandão, T., Queluz, M.P.: No-reference image quality assessment based on DCT domain statistics. Signal Process. 88(4), 822–833 (2008)
Sheikh, H.R., Bovik, A.C., Cormack, L.: No-reference quality assessment using natural scene statistics: JPEG 2000. IEEE Trans. Image Process. 14(11), 1918–1927 (2005)
Ruderman, D.L., Bialek, W.: Statistics of natural images: scaling in the woods. Phys. Rev. Lett. 73(6), 814 (1994)
Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)
Saad, M.A., Bovik, A.C., Charrier, C.: Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)
Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)
Wang, Z., Wu, G., Sheikh, H.R., Simoncelli, E.P., Yang, E.H., Bovik, A.C.: Quality-aware images. IEEE Trans. Image Process. 15(6), 1680–1689 (2006)
Zhang, Y., Wu, J., Xie, X., Shi, G.: Blind image quality assessment with improved natural scene statistics model. Digital Signal Process. (2016, accepted)
Li, C., Bovik, A.C., Wu, X.: Blind image quality assessment using a general regression neural network. IEEE Trans. Neural Networks 22(5), 793–799 (2011)
Liu, L., Liu, B., Huang, H., Bovik, A.C.: No-reference image quality assessment based on spatial and spectral entropies. Signal Process. Image Commun. 29(8), 856–863 (2014)
Xue, W., Mou, X., Zhang, L., Bovik, A.C., Feng, X.: Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features. IEEE Trans. Image Process. 23(11), 4850–4862 (2014)
Li, Q., Lin, W., Xu, J., Fang, Y., Thalmann, D.: No-reference image quality assessment based on structural and luminance information. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.) MMM 2016. LNCS, vol. 9516, pp. 301–312. Springer, Heidelberg (2016). doi:10.1007/978-3-319-27671-7_25
ul Hussain, S., Triggs, B.: Visual recognition using local quantized patterns. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 716–729. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33709-3_51
Ye, P., Doermann, D.: No-reference image quality assessment using visual codebooks. IEEE Trans. Image Process. 21(7), 3129–3138 (2012)
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)
Xiao, J., Hays, J., Ehinger, K., Oliva, A., Torralba, A., et al.: Sun database: large-scale scene recognition from abbey to zoo. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3485–3492 (2010)
Gu, B., Sheng, V., Tay, K., Romano, W., Li, S.: Incremental support learning for ordinal regression. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1403–1416 (2015)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)
Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)
Larson, E.C., Chandler, D.: Categorical image quality (CSIQ) database (2010). http://vision.okstate.edu/csiq
Ponomarenko, N., Ieremeiev, O., Lukin, V., Egiazarian, K., Jin, L., Astola, J., Vozel, B., Chehdi, K., Carli, M., Battisti, F., et al.: Color image database TID2013: peculiarities and preliminary results. In: 4th European Workshop on Visual Information Processing (EUVIP), pp. 106–111 (2013)
Mittal, A., Soundararajan, R., Bovik, A.C.: Making a blind image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)
Zhang, L., Zhang, L., Bovik, A.: A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 24(8), 2579–2591 (2015)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Acknowledgement
This work was supported by the Major State Basic Research Development Program of China (973 Program, No. 2013CB329402), the National Natural Science Foundation of China (Nos. 61401325, 61472301, 61301288, 61227004), the Research Fund for the Doctoral Program of Higher Education (No. 20130203130001), International cooperation project of Shaanxi science and technology R&D program (No. 2014KW01-02).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Zhang, Y., Wu, J., Xie, X., Shi, G. (2016). Blind Image Quality Assessment Based on Local Quantized Pattern. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9917. Springer, Cham. https://doi.org/10.1007/978-3-319-48896-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-48896-7_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48895-0
Online ISBN: 978-3-319-48896-7
eBook Packages: Computer ScienceComputer Science (R0)