Skip to main content

Enhanced Joint Trilateral Up-sampling for Super-Resolution

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing - PCM 2016 (PCM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9917))

Included in the following conference series:

  • 2565 Accesses

Abstract

In this work, we propose a new depth image super-resolution method. We use low resolution depth image, refined high resolution color image and generated HR depth image to conduct iterative joint trilateral up-sampling. During the process of up-sampling, we put forward an algorithm to smooth the area in color image with overmuch texture to solve the texture copying problem. Based on the assumption that LR image is a counterpart of HR image with missing pixels, we defined an evaluation criterion to ensure the convergence of iteration and simultaneously make the final generated image close to the true HR depth image as far as possible. Our approach can generate HR depth image with sharp edges, none texture copying and little noises. Experiments are conducted on various datasets including Middlebury to demonstrate the superiority of the proposed method and show the improvement over state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gribbon, K.T., Bailey, D.G.: A novel approach to real-time bilinear interpolation. In: Second IEEE International Workshop on Electronic Design, Test and Applications, Perth, Australia, pp. 126–131, January 2004

    Google Scholar 

  2. Keys, R.G.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10, 1521–1527 (2001)

    Article  Google Scholar 

  4. Wang, Q., Ward, R.K.: A new orientation-adaptive interpolation method. IEEE Trans. Image Process. 16(4), 889–900 (2007)

    Article  MathSciNet  Google Scholar 

  5. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)

    Google Scholar 

  6. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(22), 2323–2326 (2000)

    Article  Google Scholar 

  7. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: CVPR, vol. 1, pp. 275–282 (2004)

    Google Scholar 

  8. Yang, J.C., Wright, J., Huang, T., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  9. Kiechle, M., Hawe, S., Kleinsteuber, M.: A joint intensity and depth co-sparse analysis model for depth map super-resolution. In: ICCV, pp. 1545–1552 (2013)

    Google Scholar 

  10. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  11. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10593-2_13

    Google Scholar 

  12. Schulter, S., Leistner, C., Bischof, H.: Fast and accurate image upscalling with super-resolution forests. In: CVPR 2015, pp. 3791–3799 (2015)

    Google Scholar 

  13. Kopf, J., Cohen, M., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. ACM TOG 26(3), 96 (2007)

    Article  Google Scholar 

  14. Yang, Q., Yang, R., Davis, J.: Spatial-depth super resolution for range images. In: CVPR (2007)

    Google Scholar 

  15. He, K., Sun, J., Tang, X.: Guided image filtering. In: ECCV, pp. 1–10 (2010)

    Google Scholar 

  16. Lu, J., Forsyth, D.: Sparse depth super resolution. In: CVPR 2015, pp. 2245–2253 (2015)

    Google Scholar 

  17. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986). PAMI

    Google Scholar 

  18. Middlebury stereo database. http://vision.middlebury.edu/stereo/

  19. Ferstl, D., Reinbacher, C., Ranftl, R.: Image guided depth upsampling using anisotropic total generalized variation. In: ICCV (2013). http://rvlab.icg.tugraz.at/project_page/project_tofusion/project_tofsuperresolution.html

  20. Chan, D., Buisman, H., Theobalt, C.: A noise-aware filter for real-time depth upsampling. In: Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications (2008)

    Google Scholar 

  21. Diebel, J., Thrun, S.: An application of markov random fields to range sensing. In: Proceedings of Advances in Neural Information Processing System (2005)

    Google Scholar 

  22. Park, J., Kim, H., Tai, W.Y.: High quality depth map upsampling for 3D-TOF cameras. In: ICCV (2011)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the NSFC-Guangdong Joint Foundation Key Project (U1201255) and project of NSFC 61371138, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Yuan, L., Jin, X., Yuan, C. (2016). Enhanced Joint Trilateral Up-sampling for Super-Resolution. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9917. Springer, Cham. https://doi.org/10.1007/978-3-319-48896-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48896-7_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48895-0

  • Online ISBN: 978-3-319-48896-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics