Skip to main content

Objective Quality Assessment of Screen Content Images by Structure Information

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing - PCM 2016 (PCM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9917))

Included in the following conference series:

  • 2621 Accesses

Abstract

In this paper, we propose a novel full-reference objective quality assessment metric of screen content images by structure information. The input screen content image is first divided into textual and pictorial regions. The visual quality of textual regions is predicted based on perceptual structural similarity, where the gradient information is used as the feature. To estimate the visual quality of pictorial regions, we extract the luminance and structure features as feature representation. The overall quality of the screen content image is measured by fusing those of textual and pictorial parts. Experimental results show that the proposed method can obtain better performance of visual quality prediction of SCIs than other existing ones.

Z. Guo—This work was supported by the NSFC (No. 61571212), NSF of Beijing (No. 4142021), and NSF of Jiangxi Province (No. 20151BDH80003, 20161ACB21014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, T., Li, Y.: Deep shot: a framework for migrating tasks across devices using mobile phone cameras. In: ACM Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2011)

    Google Scholar 

  2. Lu, Y., Li, S., Shen, H.: Virtualized screen: a third element for cloud-mobile convergence. IEEE Multimedia 18(2), 4–11 (2011)

    Article  Google Scholar 

  3. Hu, H., Wen, Y., Chua, T.-S., Li, X.: Toward scalable systems for big data analytics: a technology toturial. IEEE Access 2, 652–687 (2014)

    Article  Google Scholar 

  4. Lan, C., Shi, G., Wu, F.: Compress compound images in H.264/MPGE-4 AVC by exploiting spatial correlation. IEEE Trans. Image Process. 19, 946–957 (2010)

    Article  MathSciNet  Google Scholar 

  5. Yang, H., Fang, Y., Lin, W.: Perceptual quality assessment of screen content images. IEEE Trans. Image Process. 24(11), 4408–4421 (2015)

    Article  MathSciNet  Google Scholar 

  6. Minaee, S., Wang, Y.: Screen content image segmentation using least absolute deviation fitting. In: IEEE International Conference on Image Processing (2015)

    Google Scholar 

  7. Lei, J., Li, S., Zhu, C., Sun, M.-T., Hou, C.: Depth coding based on depth-texture motion and structure similarities. IEEE Trans. Circ. Syst. Video Technol. 25(2), 275–286 (2015)

    Article  Google Scholar 

  8. Lei, J., Sun, J., Pan, Z., Kwong, S., Duan, J., Hou, C.: Fast mode decision using inter-view and inter-component correlations for multiview depth video coding. IEEE Trans. Indus. Inf. 11(4), 978–986 (2015)

    Article  Google Scholar 

  9. Ma, S., Zhang, X., Zhang, J., Jia, C., Wang, S., Gao, W.: Nonlocal in-loop filter: the way toward next-generation video coding? IEEE MultiMedia 23(2), 16–26 (2016)

    Article  MathSciNet  Google Scholar 

  10. Wu, J., Lin, W., Shi, G., Liu, A.: Reduced-reference image quality assessment with visual information fidelity. IEEE Trans. Multimedia 12(7), 1700–1705 (2013)

    Article  Google Scholar 

  11. Gu, K., Zhai, G., Lin, W., Yang, X., Zhang, W.: No-reference image sharpness assessment in autoregressive parameter space. IEEE Trans. Image Process. 24(10), 3218–3231 (2015)

    Article  MathSciNet  Google Scholar 

  12. Fang, Y., Ma, K., Wang, Z., Lin, W., Fang, Z., Zhai, G.: No-reference quality assessment for contrast-distorted images based on natural scene statistics. IEEE Signal Process. Lett. 22(7), 838–842 (2015)

    Google Scholar 

  13. Li, L., Lin, W., Wang, X., Yang, G., Bahrami, K., Kot, A.C.: No-reference image blur assessment based on discrete orthogonal moments. IEEE Trans. Cybern. 46(1), 39–50 (2016)

    Article  Google Scholar 

  14. Lin, W., Kuo, C.C.J.: Perceptual visual quality metric: a survey. J. Vis. Commun. Image Represent. 22(4), 297–312 (2011)

    Article  Google Scholar 

  15. Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? a new look at fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)

    Article  Google Scholar 

  16. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  17. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  18. Wu, J., Lin, W., Shi, G., Liu, A.: Perceptual quality metric with internal generative mechanism. IEEE Trans. Image Process. 22(1), 43–54 (2013)

    Article  MathSciNet  Google Scholar 

  19. Liu, A., Lin, W., Narwaria, M.: Image quality assessment based on gradient similarity. IEEE Trans. Image Process. 21(4), 1500–1512 (2012)

    Article  MathSciNet  Google Scholar 

  20. Yang, H., Lin, W., Deng, C.: Image acitivity measure (IAM) for screen image segmentation In: IEEE International Conference on Image Processing (2012)

    Google Scholar 

  21. Zhang, L., Zhang, L., Bovik, A.: A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 24(8), 2579–2591 (2015)

    Article  MathSciNet  Google Scholar 

  22. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  23. Sheikh, H.R., Bovik, A.C., de Veciana, G.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Process. 14(12), 2117–2128 (2005)

    Article  Google Scholar 

  24. Xue, W., Zhang, L., Mou, X., Bovik, A.C.: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans. Image Process. 23(2), 684–695 (2014)

    Article  MathSciNet  Google Scholar 

  25. Larson, E.C., Chandler, D.M.: Most apparent distortion: full reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1) (2010). 011006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongming Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Fang, Y., Yan, J., Liu, J., Wang, S., Li, Q., Guo, Z. (2016). Objective Quality Assessment of Screen Content Images by Structure Information. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9917. Springer, Cham. https://doi.org/10.1007/978-3-319-48896-7_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48896-7_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48895-0

  • Online ISBN: 978-3-319-48896-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics