Skip to main content

Signer-Anonymous Designated-Verifier Redactable Signatures for Cloud-Based Data Sharing

  • Conference paper
  • First Online:
Cryptology and Network Security (CANS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10052))

Included in the following conference series:

  • 2447 Accesses

Abstract

Redactable signature schemes allow to black out predefined parts of a signed message without affecting the validity of the signature, and are therefore an important building block in privacy-enhancing cryptography. However, a second look shows, that for many practical applications, they cannot be used in their vanilla form. On the one hand, already the identity of the signer may often reveal sensitive information to the receiver of a redacted message; on the other hand, if data leaks or is sold, everyone getting hold of (redacted versions of) a signed message will be convinced of its authenticity.

We overcome these issues by providing a definitional framework and practically efficient instantiations of so called signer-anonymous designated-verifier redactable signatures (AD-RS). As a byproduct we also obtain the first group redactable signatures, which may be of independent interest. AD-RS are motivated by a real world use-case in the field of health care and complement existing health information sharing platforms with additional important privacy features. Moreover, our results are not limited to the proposed application, but can also be directly applied to various other contexts such as notary authorities or e-government services.

The full version of this paper is available in the IACR Cryptology ePrint Archive. All authors have been supported by EU H2020 project Prismacloud, grant agreement n\(^{\tiny \circ }\)644962. S. Krenn has additionally been supported by EU H2020 project Credential, grant agreement n\(^{\tiny \circ }\)653454.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See e.g., http://www.healthcaredive.com/news/407746/.

  2. 2.

    Similar to the related concept of unlinkable sanitizable signatures [7, 8, 16].

  3. 3.

    As it is common for RS, we assume that \({{{\mathsf{{\textsc {ADM}}}}}}\) can always be recovered from \((\mathsf{m}, \sigma )\).

  4. 4.

    Here \(\mathring{{{{\mathsf{{\textsc {ADM}}}}}}}_0\) and \(\mathring{{{{\mathsf{{\textsc {ADM}}}}}}}_1\) are derived from \({{{\mathsf{{\textsc {ADM}}}}}}_0\) and \({{{\mathsf{{\textsc {ADM}}}}}}_1\) with respect to \({{{\mathsf{{\textsc {MOD}}}}}}_0\) and \({{{\mathsf{{\textsc {MOD}}}}}}_1\).

References

  1. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks and applications. In: ICS (2011)

    Google Scholar 

  2. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 486ā€“503. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0_26

    Chapter  Google Scholar 

  3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614ā€“629. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9_38

    Chapter  Google Scholar 

  4. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136ā€“153. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30574-3_11

    Chapter  Google Scholar 

  5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryptology 17(4), 297ā€“319 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87ā€“104. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13708-2_6

    Chapter  Google Scholar 

  7. Brzuska, C., Fischlin, M., Lehmann, A., Schrƶder, D.: Unlinkability of sanitizable signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 444ā€“461. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13013-7_26

    Chapter  Google Scholar 

  8. Brzuska, C., Pƶhls, H.C., Samelin, K.: Efficient and perfectly unlinkable sanitizable signatures without group signatures. In: Katsikas, S., Agudo, I. (eds.) EuroPKI 2013. LNCS, vol. 8341, pp. 12ā€“30. Springer, Heidelberg (2014). doi:10.1007/978-3-642-53997-8_2

    Chapter  Google Scholar 

  9. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable and modular anonymous credentials: definitions and practical constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 262ā€“288. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3_11

    Chapter  Google Scholar 

  10. Chaum, D.: Designated confirmer signatures. In: Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 86ā€“91. Springer, Heidelberg (1995). doi:10.1007/BFb0053427

    Google Scholar 

  11. Chaum, D., Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212ā€“216. Springer, Heidelberg (1990). doi:10.1007/0-387-34805-0_20

    Chapter  Google Scholar 

  12. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, additional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 127ā€“144. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16715-2_7

    Google Scholar 

  13. Derler, D., Pƶhls, H.C., Samelin, K., Slamanig, D.: A general framework for redactable signatures and new constructions. In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 3ā€“19. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30840-1_1

    Chapter  Google Scholar 

  14. Derler, D., Slamanig, D.: Key-homomorphic signatures and applications to multiparty signatures. IACR Cryptology ePrint Archive 2016, 792 (2016)

    Google Scholar 

  15. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186ā€“194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7_12

    Google Scholar 

  16. Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schrƶder, D., Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 301ā€“330. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49384-7_12

    Chapter  Google Scholar 

  17. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143ā€“154. Springer, Heidelberg (1996). doi:10.1007/3-540-68339-9_13

    Google Scholar 

  18. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244ā€“262. Springer, Heidelberg (2002). doi:10.1007/3-540-45760-7_17

    Chapter  Google Scholar 

  19. Lipmaa, H., Wang, G., Bao, F.: Designated verifier signature schemes: attacks, new security notions and a new construction. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 459ā€“471. Springer, Heidelberg (2005). doi:10.1007/11523468_38

    Chapter  Google Scholar 

  20. Monnerat, J., Pasini, S., Vaudenay, S.: Efficient deniable authentication for signatures. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 272ā€“291. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01957-9_17

    Chapter  Google Scholar 

  21. Pƶhls, H.C., Samelin, K.: Accountable redactable signatures. In: ARES (2015)

    Google Scholar 

  22. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 111ā€“126. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29485-8_7

    Chapter  Google Scholar 

  23. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 228ā€“245. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4_13

    Chapter  Google Scholar 

  24. Schnorr, C.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161ā€“174 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shahandashti, S.F., Safavi-Naini, R.: Construction of universal designated-verifier signatures and identity-based signatures from standard signatures. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 121ā€“140. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78440-1_8

    Chapter  Google Scholar 

  26. Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal designated-verifier signatures. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523ā€“542. Springer, Heidelberg (2003). doi:10.1007/978-3-540-40061-5_33

    Chapter  Google Scholar 

  27. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285ā€“304. Springer, Heidelberg (2002). doi:10.1007/3-540-45861-1_22

    Chapter  Google Scholar 

  28. Tessaro, S., Wilson, D.A.: Bounded-collusion identity-based encryption from semantically-secure public-key encryption: generic constructions with short ciphertexts. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 257ā€“274. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0_15

    Chapter  Google Scholar 

  29. Vergnaud, D.: New extensions of pairing-based signatures into universal designated verifier signatures. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 58ā€“69. Springer, Heidelberg (2006). doi:10.1007/11787006_6

    Chapter  Google Scholar 

  30. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114ā€“127. Springer, Heidelberg (2005). doi:10.1007/11426639_7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Derler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer International Publishing AG

About this paper

Cite this paper

Derler, D., Krenn, S., Slamanig, D. (2016). Signer-Anonymous Designated-Verifier Redactable Signatures for Cloud-Based Data Sharing. In: Foresti, S., Persiano, G. (eds) Cryptology and Network Security. CANS 2016. Lecture Notes in Computer Science(), vol 10052. Springer, Cham. https://doi.org/10.1007/978-3-319-48965-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48965-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48964-3

  • Online ISBN: 978-3-319-48965-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics