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Abstract. Error invariants are assertions that over-approximater¢iaghable
program states at a given position in an error trace whilg oapturing states
that will still lead to failure if execution of the trace ismiinued from that po-
sition. Such assertions reflect the effect of statementsatwinvolved in the
root cause of an error and its propagation, enabling sliofrgjatements that do
not contribute to the error. Previous work on error invaséfocused on sequen-
tial programs. We generalize error invariants to concurixces by augmenting
them with additional information about hazards such aseaafter-write events,
which are often involved in race conditions and atomicitglations. By pro-
viding the option to include varying levels of details in @rinvariants—such
as hazards and branching information—our approach allb&gtogrammer to
systematically analyze individual aspects of an errortrsiée have implemented
a hazard-sensitive slicing tool for concurrent traces daseerror invariants and
evaluated it on benchmarks covering a broad range of redtivemncurrency
bugs. Hazard-sensitive slicing significantly reduced #rth of the considered
traces and still maintained the root causes of the conatyriengs.

1 Introduction

Debugging is notoriously time consuming. Once a prografr@ias been observed,
the developer must identify a cause-effect chain of evdrasled to it. This task is
complicated by the fact that the underlying failing exeontirace can contain a large
number of events that do not contribute to the failure.

Error invariants|[6,2,21] are (automatically generatat)atations of a given fail-
ing execution trace that can support the developer in his@ra to narrow down the
statements involved in the failure. Error invariants pdayifor each point in the trace,
an over-approximation of the reachable states that willipce a failure if execution of
the trace is continued from that point (cf. Definitidn 7). Gequently, two subsequent
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Code fragment-Deposit: T Code fragment-Withdrawal: 1>

acquire £, acquire /;
L1 bal := balance; L} bal := balance;
release /; release /;
if (bal+a[i]<MAX) if (bal-a[j]>MIN)
bal = bal+ali]; bal = bal-a[j];
acquire £, acquire £;
Lo: balance := bal; L’ balance := bal;
release /; release /;

Fig. 1: Non-atomic update of bank account balance

error invariants in an erroneous execution reflect the agleg of the interjacent state-
ment to the observed failure. Statements that leave theiauariant unchanged do not
contribute to the failure and can be safely ignored durimgfdtilure analysis [21].

Intuitively, failure analysis with error invariants can baderstood as a variant of
dynamic slicing[[27] that takes the semantics of the failate account. Existing dy-
namic slicing techniques are based on data- and controldfiépendencies and remove
statements which can not impact the failing state via anynabfadependencies. How-
ever, compared to error invariants the precision of thestagybased slicing techniques
is limited by the fact that the semantics of the erroneow®tisinot taken into account.

Error invariants have been successfully deployed for cooshg semantics-aware
slices in sequential software. The enabling techniqgueshierautomated generation
of error invariants and slicing awnsatisfiable coreandinterpolation An error trace
translated into an unsatisfiable first-order logical forayiklds a proof of unsatisfia-
bility from which interpolants can be extracted. Theseripbéants which correspond to
assertions representing the error invariants can be ussghgiruct a slice of the error
trace that abstracts from the irrelevant statements andiesfhe faulty behavior. This
approach produces a slice of the original trace annotatédasisertions (the obtained
error invariants) showing the relevant values and varitidhe failure.

Error Invariants for Concurrent Traces. While error invariants faithfully reflect se-
quential control- and data-flow, concurrency aspects arergp entirely. Consequently,

a naive application of error invariants to concurrent tedeads to undesirable slices.
Consider, for example, the code fragments in Figure 1. AdtioosL, and L), re-
spectively, thread$’; andT, update the balance of a bank account which is stored in
the shared variablealance. The arraya contains the sequence of 5 amounts to be trans-

ferred, partitioned into three deposits € ¢ < 3) and two withdrawals{ < j < 5)
executed by thread; andT5 in parallel, respectively. Figuid 2 shows the suffix of a
failing interleaved execution in which the third depositast because of an atomicity
violation. After three successful transactions (two dépa@nd one withdrawal) thread
T, stores the currertalance in a thread-local variablkal. At this point, T} interferes
and updates the value bdhlance by performing the third deposit. Thread, then,



T2 Tl

L4 bal := balance

release £
{bal < a[l] + a[2] — a[4]}
acquire £
L1: bal := balance
bal = bal+a[3];
L2 balance := bal
release ¢
{hb(L}, L2) Ahb(L2, L5) A (bal < a[l] + a[2] — a[4])}
bal = bal-a[5];
acquire /£
L% balance := bal

{bal < a[l] + a[2] — a[4] — a[5]}
Fig. 2: Error trace with hazard-sensitive error invariants

proceeds with the now stale value storecéah and stores the result of the last with-
drawal transaction ibalance. Consequently, the execution results in a discrepancy of
the expected and the actual balance on the account.

The problem is that the final value bélance depends on the sequence (or timing)
of concurrently executed statements, i.e., the progranaomadata hazard As the
statements are not executed in the order expected by thegpnager, the hazard results
in an erroneous state, which propagates to the end of thegimoghere it surfaces as
a failure. In this setting, the fault the programmer is loakior is the above-mentioned
data hazard, in particular the write-after-write depengdretween., and L.

The gray assertions in Figulé 2 represent error invariaospeited using the ap-
proach we propose in this paper. The assertion dftestates that the local variable
bal reflects at most two deposits and one withdrawal. At this fpdive fault has not
been triggered yet. The last conjunct in the error invarétdr the context switch in-
dicates that the value dfal is unchanged. The error invariants produced by previous
techniquesl[[6J2,21] track only the state information cegrduby this final conjunct.
Therefore they would slice away all the statements of thf8asince the error invari-
ants before and after the context switch would be identiEals, the resulting slice
would not reflect the data hazard and not even the relevatéal/ing.

To address this shortcoming, we lift interpolation-badmihg) techniques to a con-
currency setting by taking into account control and dataddpncies between threads.
The second assertion if; (after the context switch) already reflects this adaptation
the expressiomb(L}, L2) A hb(Ls, L}) indicates that the statement Bt happened
before the statement &b, which in turn happened before the ond gt This specific
order is crucial to the failure. A slicing algorithm takingi¢ information into account
cannot safely slice the statementatin threadl’; anymore. Note that, unlike previous
techniques, error invariants in our approach not only refleset of states but also the
execution order of critical statements via the happenefbetlation (cf. Section 3.2).



Inter-thread data dependencies enable us to isolate (aotbagbugs) race condi-
tions and atomicity violations which constitute the predivent class of non-deadlock
concurrency bug$ [17]. Contrary to other concurrency dgimggtools [5,24.8,9,22,23]
which target specific kinds of bugs, we provide a general &aork for concurrency
bug explanation. We applied an implementation of our apgrda error traces gener-
ated from concurrent C programs using the directed testiolgConCrest [[7]. We eval-
uate our approach on benchmarks that contain bugs foun@lwald software such
as Apache, GCC, and MySQL [16]. On average, our slices yisldrificant reduction
of the number of variables and the length of the considereaks while maintaining
information that is crucial to understand the underlyingaarency bug.

2 Preliminaries

Syntax of Concurrent Programs. A concurrent program comprises multiple threads
each represented by its control-flow graph (CEG) [0,

Definition 1 (Control-Flow Graph). A CFG (N, E) comprises node®/ and edges
E. Each noden € N corresponds to a single programming construct from a simple
imperative language comprising assignmeuntse and conditionsR.

Nodes representing conditional statements have two ouggeiges labeled and
N, respectively, corresponding to the positive and negatisteome of the condition. All
other nodes — except the exit node, which has no successakse-oht-degree one.

If a nodem is control dependent on a noadeandn represents a condition, its
outcome can determine whetheris reached:

Definition 2 (Dominators and Control Dependency).A nodem post-dominates a
noden if all paths to the exit node starting atmust go throughn. Nodem is control
dependent om (wheren # m) if m does not post-dominateand there exists a path
fromn to m such thatn post-dominates all nodes (other thajpon that path.

Based on Definitiohl2, we introduce our notion of a scope:

Definition 3 (Scope).A nodem is in scope of the condition at nodeif m is control
dependent on or in scope of a condition that is control dependenton

A CFG is in Static Single Assignment (SSA) forid [3] if eachiahte is assigned ex-
actly once. The standard mechanism to translate CFGs imdof@%# is to subscript

each definition of a variable with a unique version numbenseguently, each defini-
tion is uniquely identified by the corresponding SSA vaiallonflicting definitions at
a control-flow merge point: in a CFG are resolved by introducing an arbiter nade
(with sole successon) to which we divert the incoming edgesof. The arbiter node
n is annotated with @-function which switches between the definitions from diffe
ent incoming paths (see Figure 3). Algorithms to convertagymm into SSA form are
described in[B] and [2(;8.11].



Definition 4 (Program Path). Let (N;, E;) be a CFG representing a threadA path
P, of threadt is a sequence, (ny,ns),na, ..., (ng_1,ni),n, of nodesn; € N,
and edgesn;, n;+1) € E;. A program pathP =, (n1,m2),n2, ..oy (Ng—1, Nk ), Nk
corresponds to an interleaving of paths of threads (startt their respective initial
nodes) such that for eachwith 1 < i < k eithern;,n;+1 € Ny and(n;,n;+1) € E;
for some thread, or n; andn;;, belong to different threads an,;, n,+1) is an inter-
thread edge representing a context switch.

Given a (program) patR, let[n;, n;] denote the sub- v
path n;, <ni, ni+1>, M1y «ves Mj—1, <nj,1,nj>,nj of
P including the nodes; andn; and(n;,n;) the sub- k4 N
path <7’Li, ni+1>, Mit1y -y Nj—1, <nj_1,nj> excluding ’Xl =1 ‘ ’xz =2 ‘

the nodes:; andn;. We useP|, to denote the projec-
. . . X3 X1y X2
tion of a program patl#® to thread: in which only nodes

n; € N; and edgesn;,n;+1) € E, are retained and m
any sub-patlin;, n;) with n;,n; € N, andn; ¢ N, for

i < 1 < jisreplaced with the edgé:;,n;), i.e., P|, Fig.3: SSA form of:
is a path of the threatd Consequently, for each programs (x<o0) then x:=1 else
pathP, P|, is either empty (if? does not visit threat) x:.=2; y:=x

or a path of thread starting at the initial node of. Finally, P|, andP| denote the
projection of P to the sequence of nodésand edged’ in P, respectively.

n

Semantics, Feasible Executions and Error TracesThe variables of a program are
partitioned intoglobal andthread-localvariables. A states maps each variable to a
value, ands(e) denotes the value of expressiom states.

A program pathP corresponds to a sequence of statements. We require that eac
statement refers to at most one global variable, and heatnstnts execute atomically.

Definition 5 (Execution). An execution of a patl® corresponds to an execution of
the statements d@? in order (starting in an initial state). We usemtp(n;) to denote
the statement represented by naddn a path P. In particular, if noden; represents
the conditionR, let ¢ be such that;, € N, and let(n;,n;) be the first edge iP|,
succeedingy;. Thenstmtp(n;) is R if (n;,n;) is labeledy, =R if the edge is labeled
N. If n; is the last node of a thread thenstmtp (n;) = true.
The execution of one statement in the current program statelefined as follows:
— If stmtp(n;) is the assignment:=e, the successor state efis updated such that
x evaluates ta(e) and all other variables are unchanged.
— If n; is a conditional statemerR, the execution proceeds Hfstmtp(n;)) is true.

A path P is feasibleif there exists an initial state for which the execution oP
is not blocked by a condition which is false. Given a p&thwe usestmtsp to denote
the sequence of statements representefl.bdbusing our notation, we sometimes call
stmtsp a path and will usé® andstmtsp interchangeably.

We usestmtsp[i] to denote thé™ statemengtmt p(n;) of a pathP, andstmtsp|i, j]
to denote the sub-patimtsp[i]; .. .; stmtsp[j] ([ns, n,], respectively). We drop the
subscriptP if it is clear from the context.



A states; is reachable from a state_; via a sub-patltmtsp|i, j] if an execution
of stmtsp[i, 7] starting ins;—; does not block and results in statge

We assume that the correctness of a path is determined byeriiasy expected
to hold after the execution of the path. Error traces whislilten the violation of) are
defined as:

Definition 6 (Error Trace). A path P is an error tracefor the assertiony if P is
feasible and always results in a statsuch thats(¢y) is false.

Intuitively, an error trace is an execution of a failing tease that does not satisfy the
specificationy. We assume (w.l.0.g.) that pathin Definition[@ reaches the end of the
main thread, wher¢ is asserted. Consequentlyjs not in scope of any condition.

3 Error Explanation

In this section, we first recall the interpolation-basedsj approach presented inl[5,2]
for sequential software. We then explain how we extend ibtocarrent executions.

3.1 Interpolation-based Slicing for Sequential Traces

Ermis et al.[[6] and Christ et al.[[2] usaror invariantsto identify statements that do
not contribute to the assertion violation in sequentialeésa

Definition 7 (Error Invariant). Given an error traceP of lengthk for assertiony, an

error invariant for position: (with ¢ < k) is a set of state&' such that

(a) F contains (at least) all states reachable from an initialtetaiastmtsp[1, 4], and

(b) every feasible execution stimtsp[i + 1, k] starting from a state irF results in a
state in whichy is false.

An error invariantE is recurrin@ for positions: < j if E is an error invariant fori as

well as forj.

Intuitively, an error invarianf represents an over-approximation of the states that
are reachable via the pathmts[1, ] such thastmts[i + 1, k] if executed from a state
in E still results in failure. According td_[6l2], statementstieen a recurring error
invariant are “not needed to reproduce the error.”

Errorinvariants can be derived using Craig interpolatibefihed below) and a sym-
bolic encoding of a pattP [6/2]. In the following, we derive a symbolic encoding
enc(P) similar to the one in[[6] from a straight-line program in SS#rh, which rep-
resents the patl to be encoded. This straight-line program is obtained byetsing
the CFG alongP. If a node is visited repeatedly (via a cycle in one of the Cf@s
new version of the variable is introduced; for straightlprograms (which do not con-
tain control-flow merge points) it suffices to increase thesioe number of a variable
each time it is assigned and refer to the latest version df eadable in conditions and
right-hand sides of assignments.

5 To avoid confusion with inductive interpolant sequencesfiiiition[d), we replace the notion
of inductive error invariant§6l2] with recurring error invariants.



Given a pathP in SSA form as described above, the formeta(P) is a conjunc-

tion /\f:1 encp(n;) of the encodings of the individual statements:
N [ (xi=e) if stmtp(n;)isx;:=e

encp(ni) = {Stmtp(ni) if stmtp(n;) is a condition (1)

Variable assignments that satisfy formelec(P) correspond to executions; note
that if all variables inP are initialized before being useehc(P) has only one unique
satisfying assignment. In this context, interpolants (Bi&én[8 below) are a symbolic
representation of sets of states. Letr(A) be the set of (free) variables occurring in
a formulaA. An interpolant/ is a predicate that encodes all statdsr which s(I) is

true. We definatates(1) = {s|s(I) = true}.

Definition 8 (Interpolant). Let A and beB be a pair of first-order formulas such that
A A B is unsatisfiable. Ainterpolantof A and B is a first-order formulal such that
A=1,B = —I,andVar(I) C Var(A) N Var(B).

Definition[8 corresponds to the definition of interpolant§difi] under the assumption
that all non-logical symbols inl and B are interpreted.
The following definition is a generalization of interpolant

Definition 9 (Inductive Interpolant Sequence)LetA,, ..., A, be a sequence of first-
order formulas whose conjunction is unsatisfiable. Then. . I,, is an inductive inter-
polant sequence if

— Iy = true andI,, = false,

—foralll <i<n,I;,_1 NA; = I;,and

—forall 1 <i<mn,Var(l;) € (Var(A1 A ... AA;) N Var(4;11 A ... A Ay)).

Given a pathP &, (n1,n9),n9, ..., (ng—1,nk), ng in SSA form, a sequence inter-
polantly, ..., Iy derived from the formulasncp(n,), ...,encp(ng), ¢ is inductive
in the sense thatates(I;) contains all states reachable framates(;,_; ) via stmt(n;)
(and potentially more) [19,21]. Moreovel, A v is not satisfiable, i.e., all states rep-
resented byl; violate assertion). If I; represents an error invariant for positions
andj (i.e.,states(l;) is an error invariant fofj and; implies I;) thenI; is inductive
with respect to the sub-pathmtsp[i + 1, j]. Accordingly, slicing[n;+1,n;] away (i.e,
replacing it with an edgén; 11, n;)) preserves the assertion violation.

A trace obtained by removing statements between recurriogi@variants fromP
is sound in the sense of Definitibnl10 below:

Definition 10 (Sound Slice) A slice of pathP of lengthk is a pathQ of lengthm with
stmtsg[1] = stmtsp[i1], stmtsg[2] = stmtsp[ia], ..., stmtsg[m] = stmtsp[i,,] with
1<idy <ig <...<1, <k Given an error traceP for 1, a slice@ of P is soundif
Q is also an error trace forp.

3.2 Interpolation-based Slicing for Concurrent Traces

In the following, we enhance and extend the interpolatiasddl slicing technique dis-
cussed in Sectidn 3.1 to take control dependency as wellresio@ncy into account.



{true}

ba|1::M|N; {bal - |\/||N}
<
. ar:= — 100;
bal;:=MIN; {{EEZ if(bal; + a; < MIN) {{E::l i? - m:m
= - —n. 1 1 > J
_afl.b—l— 100,< - ftrue} bal,:=0; (baly + 2, < MIN)
i (ball +31 < ) {true} bal bal { A(baly = 0) }
ariib_l’ SNy, (balz = 0} a:,.rt—(:i:(I a;);\AIN)' {bals = 0}
assert(bal, > ' {false) assert{bals ~ > {false}
(a) Control-insensitive slice (b) Control-sensitive slice

Fig. 4: Slicing sequential trace with Error Invariants

Control Dependencies. The following example shows that the encoding(stmts)
fails to capture control dependence (Definifign 2).

Example 1.Figure[4& shows the statements of a pa&tliin SSA form) and a corre-
sponding interpolant sequence on the right. The exampleggjaential variation of the
bank account example which fails if the required minimunabakMIN is larger than
zero. The resulting slice (indicated in bold) contains dhlkylast assignment teal and
the assertion. It does not reflect the fact that threbranch of the conditional statement
has to be taken for the failure to occur.

We present a (modular) extension to the encoding defineddticdé3.1 that en-
ables the inclusion of control dependencies. Unlike priorkv2], which addresses
this problem using a custom-tailored control-sensitiveogling, our technique is based
on the SSA representation. As in Section 3.1, the startinigt pd our approach is a
straight-line representation of the error trdéeUnlike before, however, we include the
¢-nodes from the SSA presentation of the program®in

¢-functions atn € N, for a variablex, take as parameters the subscripted variable
versions representing definitionsxoin thread: that reach.

Consequently, when generating the straight-line pretentaf P, we include allg-
nodes of the SSA presentation of the program that are tredéngP. As we are encod-
ing a single pathP, however takes only one parameter, since only one definition of
each variable reaches: in P. Our extensiorsenc(stmts) of the encodingnc(stmts)
is based on assignments=¢(x; ), which make control dependencies in an error trace
P explicit. In order forx; to take the value of;, the outcomes of the conditional state-
ments preceding the assignmenkpin P have to permit the assignmentto be executed.
Letstmt(n;) be the statement assignirg and note that control dependency coin-
cides with our notion of a scope (as defined in Definifibn 3).d&Ene

guard(n;) £ /\ {enc(n;)|n; is in scope ofu; } . (2)

In order for the definition ok; in n; to be reachable along, guard(n;) needs
to evaluate tarue. Moreover, since trac® does not traverse alternative branches, the



value ofx; is unknown ifguard(n;) does not hold. Based on this insight, we define a
control-sensitivencodingecsenc(P) as follows:

guard(n;) = (x; = x;) if stmt(n;) isx;:=¢(x;)

andn; assigns;
csenc(n;) = enc(n;) if n; is ajm ass?gnr%ent (3)
1 1
true if n; is a condition

An inductive error invariant for the encodirgenc(P) induces a control-sensitive
slice (cf. Definition 4 of flow-sensitivity and Theorem 6 if)2

Definition 11 (Control-sensitive Slice).Let P be an error trace for the assertion.
A (sound) slice) is control-sensitivef for every statemendtmtsg[k] = stmtsp[i]
and every assumptianimtsp[j] such thatstmtsp[i] is in scope obtmtsp[j], there is
some prefixtmtsg[1, h] of stmtsg[1, k] (with A < k such thastmtsg [h] precedes and
stmtsg[h + 1] succeeds or equalsmtsp[j] in P) such thatstmtsg[1, &) is an error
trace for—(stmtsp[j]).

Intuitively, the definition requires thad justifies that every branch containing a
relevant statement will be taken.

Theorem 1. Let P be a (concurrent) error trace fot) of lengthk and letiy, I ,
... lk—1, Ix+1 be error invariants (withly = true and I, = false) obtained from
an inductive sequence interpolant feienc(ny), . . ., csenc(ng), 1. Let@ be the slice
obtained fromP by removing each sub-paff[i, j] for which I;_ is inductive. Thei®
is a sound control-sensitive slice fér.

Note that the interpolants in Theoré&in 1 may contain diffevensions of a variable
X, since the encoding af-nodes may refer to conditions in the “past”. This corregfson
to history or ghostvariables used in Hoare logic and does not affect soundness.

Example 2.Figurd4b shows the path from Examplél sliced using a control-sensitive
encodingcsenc(P) based ong-nodes. Note that the statements initializing and
amount, which guarantee that thebranch is taken, are included in the slice.

Synchronization. In the simple interleaving semantics deployed in this palpeks

can be modeled using an integer varialfl@nd atomicity constraints. Lodkis avail-
able if its value i9). Any other value indicates that the lockis held by thread. Let

n be a node of threatlwith a self-loop waiting for¢ = 0) to become true, and its
successor node assignintp ¢. By constraining the execution such that no thread other
thant can execute betweenandm, we guarantee that lock acquisition is performed
atomically. Analogously, a lock held by the current thread (guaranteed by condition
¢ = t) is released by the statemeint0. Control-sensitive slices also take into account
lock acquisition statements, as relevant statements &g @u a locked region are in
the scope of the corresponding conditi@n= 0).

Hazards. A trace contains aata hazardf its outcome depends on the sequence (or
timing) of concurrently executed statements. As explafoethe sub-trace in Figuid 2



T2 Tl
Ls: balance; := bal + a[3];

L5 balancey := bal — a[5]
balances := w(balance;, balancez);
assert(balances = a[l] + a[2] + a[3] — a[4] — a[5]);

Fig. 5: Part of a path with hazard anehode

discussed in Sectidd 1, applying error invariants in thegioal form [6] to sequential
paths results in slices that ignore important charactesistf concurrent traces. While
csenc(P) reflects control-flow, it fails to capturdata dependenciesvhich are con-
straints arising from the flow of data between stateménig [20

Read-after-write If statemenstmt(n) writes a value read by statemenint(m), then
the two statements aflow dependent

Write-after-read An anti dependenceccurs when statemestmt(n) reads a value
that is later updated (over-written) Bymit(m).

Write-after-write  An output dependencaxists ifstmt(n) as well astmt(m) set the
value of the same variable.

While this definition also applies to single threads, we ewnourselves exclusively
with inter-threaddata dependencies. In a pdtha data dependency between different
threads can indicate a conflicting access (i.eac& conditioror hazarg.

Unlike flow dependence (which is taken into accountely(P) and csenc(P),
since the SSA form represents use-definition pairs andftiveralso flow dependence
explicitly), anti and output dependencies are not expiicthe SSA-based encoding of
P used in Sections 3.1 ahd B.2. Similar to merge points in sagigrograms, inter-
thread dependencies iR give rise to conflicting definitions of global variables. The
Concurrent SSA (CSSA) form of paths presented in [28,2%pducesr-functions to
resolve dependencies between accesses to global vaiiiabliéerent threads.

To convertan error trace into CSSA form, we introduce arteribiode before every
read access to a global variaklie an error tracé” (analogously to the arbiter nodes for
¢-functions in Sectiof]2). The arbiter node is annotated withfunction that selects
from all definitions of the global variabbein P the most recent definition:

m-functions atn € N, for a global variablex, take as parameters the subscripted
variables representing definitionsoin all thread$§

Figure[® shows a simplified suffix of the trace in Figlie 2. Tmepdified trace
consists of two threads withsanode (arbitrating between the definitiosgance; and
balances) inserted before an assertignthat states the expected outcome. Note that
unlike the degeneratg-functions used in Sectidn 3.2,mafunction forx has as many
parameters as there are definitions af P.

To encode WAR and WAW dependencies, we introduce an irrgfletiansitive,
and anti-symmetric relatiolb(n;, n;) which indicates that node; is executed before
noden;. This happens-before relation enables us to encode thes edge program
trace, reflecting the program order and the schedule.

6 As an optimization, only théast definition ofx in threadt beforen is added.

10



In addition,rd(x, n;) andwr(x, n;) indicate thak is read at node; and written at
noden;. These primitives allow for an explicit encoding of data elegencies:

wr(x,n;) A hb(ni, n;) Ard(x,n;) < rawy(n;, n;)
rd(x, n;) A hb(n;, nj) Awr(x,n;) < warg(n;, n;) 4)
wr(x,n;) A hb(ng, n;) Awr(x,n;) < wawy(n;, n,)

The hazard-sensitive encoding presented below incog®data dependencies into
the encoding of a trace. The encoding is derived directiyfagprogram patl®, taking
advantage of the information encoded in the edges. Assigtenfeithoutr-functions)
are encoded as follows:

wr(x, n;) A enc(n;) if n; writes global varx
hsenc(n;) = rd(x,n;) Aenc(n;) if n; reads globalvax  (5)
enc(n;) otherwise

Nodesn; with w-functions incorporate happens-before information. hebe a
m-node assigning;, let n; be an assignment to; and the last node beforg in P
updating the global variabbe Thenhsenc(n;) is:

rd(x,n;) A (DEP(n;,n;) = (% = x;)) (6)
whereDEP (n;,n;) is the following condition:

rawy (1, 1;) A /\ (wawy (m, n;) V warg(n;, m)) @)
m € {n € P|wr(x,n)}
m # n;

Intuitively, DEP(n;, n;) states thak; is written beforex; is read, and no other
definition ofx interferes.
Finally, edges are encoded as happens-before relations:

hsenc((ni, ni+1>) d:ef hb(ni, ni+1) (8)

Given a pathP « ni, (n1,na), na, ..., {(ng_1,nk), nk, applying sequence interpo-
lation to the formulasisenc(ny), hsenc((n1,n2)), hsenc(nsz), ..., hsenc({(ng_1,nk)),
hsenc(ny), ¢ yields a sequende;, outy, . . ., ing, out, of formulas such that

in; A hsenc(n;) = out; andout; A hsenc((n;, n;11)) = in;j41 .

Unlike before,in; andout; propagate facts about states as well as execution order.
We can slice sub-pat;, n;] if in; = out;, sub-path(n;, n;) if out; = in;, sub-path
[ns, nj) if in; = inj;, and sub-patin;, n;] if out; = out;. The resulting sliced patfy
corresponds to a sequence of statemetmissy and a set of edgeQ| ; representing
context switches and program order constraints relevahgterror.

Definition 12 (Hazard-sensitive slice)Given an error traceP, a (sound) slice) is
hazard-sensitivé for every statemenstmtsg[k] = stmtsp[j] and statemenitmtsp|i]
such that there is an inter-thread data dependency betweets[i] and stmtsp[j],
there is anh such thastmtsg [h] = stmtsp[j].
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Theorem 2. Let P be a concurrent error trace and |€) be the slice obtained fro®
as explained above. Thé&nis a sound hazard-sensitive slice®f

Example 3.Consider the path in Figuid 5. A hazard-insensitive slicalld/@ontain
the statement at nodE, but not the statement at nodé, (as explained in Section
[0) sinceLs has no influence on the state affgy. Encoding[(6) and{7) of the-node
require the interpolant before thenode to implywawpalance (L2, L% ), and consequently
wr(balance, Ls), wr(balance, L)), andhb(Ls, L) (as indicated in Figulld 2). Nodés
and[L}, as well as the edg@.», L)) are included in the resulting slice.

3.3 Fine-Tuning Explanations

The encodings presented in Secfiod 3.2 can be combined taightforward manner,
providing us with a choice of control WAR , and WAW dependesaieflected by the
resulting explanation. Control-flow or hazard-sensiiian be added (or removed) by
(dis-)regardingr-nodes andp-nodes inP. Control-flow dependency can be incorpo-
rated intor-nodes in Equatiori{6) by prefixing the assignment= x; with the guard
of the definition ofx; at noden;: guard(n;) = (DEP(n;,n;) = (x; = x;)), similar
to the guard in the definition @benc(n;) in Encoding[(B). Moreover, Encodinlgl(6) can
be made insensitive to WAR dependencies by restrictinp predecessors of; and
by dropping the disjunavar,(n;, m) from (@) (and similarly for WAW dependencies).
Note that flow dependency has a special role, since use-il@fichains are explicit in
the SSA representation.

The partial order given by the subset relation {cs, war, waw}

over the power-set of the remaining dependencies — | >

{cs, war,waw} reflects possible levels of detail ofeswart  {eswaw} - {war, waw}
explanations, as illustrated by the Hasse diagram to >< >

the right. As indicated in the diagram, the configu-{} {war} {waw}
ration() corresponds to the basic approach presented | /
in [6121], whereaqcs} represents control-flow sen- [621]

sitive approach.
While we see interpolants as an inherent part of the explamahe level of detail

provided by these annotations cannot be related or forethlas easily as it is the
case for dependencies: changing the underlying encodimcgtjy has an unpredictable
effect on the structure and strength of interpolanis [4,19]

4 Experiments

We implemented our approach as an extension of the direzséidg toolConCrest [[7].
We generate error traces of concurrent programs and thelupeslices as described in
Sectior 8. While all slices provided by our tool are soundhimgense of Definitidn 10,
the level of detail might not be sulfficient to reflect the urgiag bug: for example, the
hazard-sensitive slice for tlecount benchmark readily reveals the atomicity violation.
Therefore, it is not necessary to compute a more detailettalesensitive slice.
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The results from Sectidn 3.3 enable the developer to grhdunaltease the detail in
an iterative manner until the bug can be understood. Thitosegrovides an empirical
evaluation of the size and accuracy of slices with varyingle of detail.

Effectiveness of the Method. To evaluate our method, we applied it on a collection
of faulty C programs to show how effective the different degency encodings are at
revealing different types of concurrency bugs. We useddifterent encodings to track
data and control dependencibsrefers to hazard-sensitive encoding for tracking inter-
thread data dependencies,refers to control-sensitive encoding for tracking control
dependencies, ardb denotes the basic encodiagcp of Sectior 8. The symbol “+”
indicates combinations of encodings.

Our definition of whether the bug was captured depends onyftee af bug. For
data race bugs, we required that the slice reflecting the batams both conflicting
accesses. For atomicity violations, a slice reflecting ting dontains conflicting state-
ments from another thread interrupting the desired atoaegmon. For order violations,
a slice reflecting the bug contains conflicting statementserproblematic order.

Table[1 summarizes our empirical results. The benchmarkisisntable are clas-
sified into two groups. The first group consists of 33 mulédded C programs taken
from [16][] These programs capture the essence of concurrency bugteejpovarious
versions of open source applications such as Mozilla, Apaghd GCC. Thapache2
andbluetooth benchmarks in the second group are simplified versions dfcapipns
taken from [7]. Thepool-simple-2 benchmark is a lock-free concurrent data structure
with a linearizability bug. We discuss this benchmark inttiep App [B. The remaining
two benchmarks in the second group are variants of the pmodiscussed in Sectidnh 1.
For each benchmark program, the name, the number of linesdef @ OC), the num-
ber of threads, and the type of bug are listed in Table 1. Tielmu of error traces (#T)
per benchmark varies due to specific assertionsCam€rest’s ability to produce error
traces. They do not reflect any preselection of traces. hi,10bnCrest generated 90
error traces from the 38 programs all of which we considenezlir evaluation.

We usev to indicate that the explanations obtained using the cpording encod-
ing capture the bug, and — if the bug was not captured. By migrinspecting the slices
we found that for all but two benchmarks, tracking all deperadesis+cs+hgyields ex-
planations that capture the corresponding concurrencyfargnost benchmarks there
exists at least one additional encoding which provideslemglices that still reveal the
bug. This encoding is usuallys (68%) orcs (50%) depending on the nature of the bug
and the assertions. Interestingly, our analysis revealgtbbop, freebsd_auditarg and
gcc-java-25530 from [16] contain sequential bugs already reflected dsalice rather
than concurrency bugs (even thoughlini[16] they are cladsiféeconcurrency bugs).

In two of the three error traces @keebsd_auditarg the bug is triggered by non-
interleaved executions of the threads. For these tracggrannding yields an adequate
explanation. In one error trace, however, the bug is trigdéy an interference between
two threads, which is only reflected by the encodidgshsandds+cs+hs

7 ConCrest's search heuristic failed to generate an error trace fofitthench_longer, a variant
of fibbench with larger parameters. We emphasize that this failurel&ead to the generation
of traces rather than slicing.

13



Only the programsash_table, ms_queue02, andlist_seq, which contain bugs in
intricate concurrent data structures, require theds#tcs+hsencoding.

Only for the two benchmarkapache-25520 andcherokee_01 the slices produced
by our method failed to reveal the bugs. The problem is thatdlot cause of the asser-
tion violation is that a specific branch of a conditionaletaént is not taken during the
execution. Slices of single error traces cannot reveal timleatcurrence of an event as
the cause for failure. Therefore, we plan to analyze merged gaces in future work.

Running times. The generation of the slices takes an average of 2#3s (1.02s)
across all encodings with a maximum of 168.8s. As expedtedpinning times increase
with the amount of detail captured by the encoding. Genggads explanation takes
0.43s on average (= 0.18s) whereas a@s+cs+hsexplanation takes 7.3s (= 21.255s).

Quantitative Evaluation. Table[1 shows the effect of tracking different dependencies
on the size of the sliceg. refers to average percentage reduction as the quotieng of th
number of remaining and original instructions, so smallenbers mean smaller slices.
As expected, increasing the sensitivity of the algorithntregking more dependencies
leads to smaller reductions. However, as we have seen pdyjohe hazard-sensitive
explanationsds+hg, which capture the concurrency bugs in 68% of the benchspark
on average contain 35% of the original instructions and 54%eoriginal variables.
We gained the maximum reduction with the encodithg) (however the resulting expla-
nations reflected the concurrency bugs in only 23% of the tiaacks. The amount of
reduction differs across benchmarks with a maximum of 93f4Heapache2 bench-
mark program. Slices which are hazard- but not control-flems#tive tend to be much
smaller than slices which are control-flow sensitive, butdada-hazard sensitive.

5 Related Work

The original work on error invariant§l[6,2] is discussed acond 2 an@]3. Murali et
al. [21] relate error invariants to unsatisfiable cores amasistency-based diagnosis.
The latter is also implemented @oncBugAssist [16], a repair tool for concurrent pro-
grams, andugAssist [14] for the diagnosis of sequential bugs. Ba&hgAssist and
ConcBugAssist take into account multiple traces simultaneously and cetdybetter
accuracy in certain cases (e.g., benchmapkeghe-25520 andcherokee_01 in Section
[)). Neither [14,16] nor[[21] report branch conditions (catsments explaining why
they hold). On the benchmarks from [16], we found tBabcBugAssist yields similar
reduction ratios as our tool using the+dsencoding. The dependency©bncBugAs-
sist on a bounded model checker for the constraint generati@ilgstalability issues:
even on a simplified version gfool_simpl_2 for which we provided the minimal un-
winding depth necessary to detect the bdgncBugAssist timed out after 45 minutes,
while our approach generated a slice in 2.5 minutes for tiesimplified program.

Other static approaches for simplifying and summarizingotwrent error traces
include [10], [11], [12], and[[15]. In[[10], an SMT solver amdodel enumeration is
used to derive a symbolic representatiomlbfeorderings of a given trace that violate a
safety property, which is then used to explain the bug. atsteve analyze a single fail-
ing trace, ensuring that our encoding explicitly capturbgcv happens-before relations
are relevant for the faulty behavior.
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Benchmark #T LoC AIT | Threadd Bugs| ds+cs+hs ds+hs ds+cs ds

S[%]  V[%] S[%]  V[%] S[%] V%] S[9%] V%]

nw o p coRBlpy 0o w oRBlp 6 o 6 RB |po p o RB
account 3| 43 (58) 51.7] 4 |AV| 6212 77 6+ | 4210 68 6+ (43 8 68 6 - |20 5 59 5 -
apache-21287 2| 30 (79 43 3 |A/| 72 0 87 0v |28 0 53 0 —|51. 0 8 0 v |9 0 40 0O -
apache-25520 1| 88 (192 34| 3 |A/| 38 - 50 - -| 9 - 33 - -|26 - 50 - - |9 - 33 - -
barrietvf_false 12| 57 (85) 27| 4 |A/| 70 0 80 Ov |19 0 40 O -[67 O 80 O + |15 0 40 0 -
boop 1| 58 (98) 40| 3 |SB| 38 - 47 - v |30 - 40 - v |35 - 47 - v |28 - 40 -
cherokee01 1| 88 (188 28] 3 |A/ | 46 - 60 - -| 11 - 40 - —|32 - 60 - - |11 - 40 - -
counterseq 1| 28 (41) 29 3 DR| 72 - 90 - v (38 - 70 — v (52 - 80 - - (31 - 60 - -
fibbench 234 (47 34/ 3 |A/| 94 3 97 3|94 3 97 3, (88 3 97 3 v |88 3 97 3
freebsdauditarg 3 52 (104 371 4 |SB| 67 7 8 0v |32 5 64 0v [5710 79 10+ (2/3)|30 8 57 10+ (2/3)
gec-java-25530 2| 36 (86) 17| 3 |SB| 35 0 40 0v |35 0 40 0v |24 0 40 O v |24 0 40 0 v
gec-libstde++-3584 1l 40 (104 37| 3 |AV| 62 - 79 - v |35 - 64 - v[46 - 71 - - |30 - 57 - -
gec-libstde++-21334 1l 36 (@6)| 27| 3 |ov| 63 - 78 - v |22 - 33 - |48 - 78 - - |15 - 33 - -
gec-libstdc++-40518 2| 40 (104 23| 3 | AV | 43 0 56 0v |30 0 56 0 —|39 0 56 0 + |22 0 56 0 -
glib-51262402 2| 50 (94) 275 3 | AV | 84 2100 0v |47 3 80 0. |60 4 8 5 - |38 5 65 5 -
hashtable 1l 51 (124 69| 3 |AV| 41 - 61 - v | 4 - 21 - —|20 - 54 - - |4 - 21 - -
jetty-1187 1| 24 (98)| 26| 3 |A/| 8 -100 - v |35 - 78 - v |58 - 8 - - |27 - 67 - -
lazyOLfalse 239 (55| 23| 4 |ov| 91 0100 Ov |65 0100 0v |87 0 100 0 v |61 0 100 0 v
lineEq2t 01 1/ 35 (58) 52| 3 |AV| 69 - 8 - v |46 - 7L - v |52 - 76 - v |37 - 67 -
linux-iio 1| 54 87| 55| 3 |DR| 40 - 59 — v |20 - 50 - v |27 - 4 - - |16 - 32 - -
linux-tg3 1| 93 (115| 167| 3 |DR| 19 - 38 - v |13 - 36 - v |8 - 11 - v |2 - 9 - -
list_seq 1| 59 (122 53| 3 |A/| 58 - 95 - v | 6 - 30 - |40 - 75 - - |6 - 30 - -
llvm-8441 2(149 (244) 325 3 |AV | 74 4 92 0|18 0 33 0|55 7 8 8 - |12 0 33 0 -
mozilla-61369 1l 19 68 6| 1 |Ov| 67 -100 - v | 67 - 100 - v |67 - 100 - |67 - 100 - v
ms queue02 1l 67 (97 66| 3 |A/| 44 - 52 - v| 5 - 20 - —|35 - 48 - - |5 - 20 - -
mysql5 1l 21 (27) 28] 3 |Av| 8 - 8 - |46 - 67 - v |46 - 8 - - |25 - 67 - -
mysql-644 1| 68 (165 16| 3 |A/| 38 - 33 - |38 - 3 - |25 - 33 - - |25 - 33 - -
mysql-3596 1/ 30 @®) 6| 3 |DR|1200 - 100 - v |100 - 100 - v |67 - 100 - |67 — 100 - v
mysql-12848 1| 51 (142) 14| 2 A | 71 - 67 - v |43 - 50 - —-|50 - 67 - v |29 - 50 - -
readwrite_false 1| 78 (140) 58 5 AV 17 - 27 - v | 17 - 271 - v |17 - 27 - v 17 - 27 - v
reorder2false 8| 50 (105) 105 5 |Av | 8614 100 Ov | 86 14 100 0v 62 8 100 0 v |62 8 100 0 v
testconc02 1l 15 (@9 9 2 |A/| 8 -100 - v |8 -100 - v |56 - 100 - - |56 - 100 - -
transmission-1.42 1l 25 (78 5| 3 |DR|100 - 100 - v |100 - 100 - v |80 - 100 - v |80 - 100 - v
VectPrime02 1| 97 (183) 115| 3 |AV | 25 - 68 - v | 9 - 45 - /|18 - 59 - - |7 - 36 - -
apache2 8/719 (2355 3 |AV| 82 92v|[ 10 10-[72 92 v |10 10 v
bankaccount-lock-for-loop 5(103 (-)| 247 3 AV 46 2 44 2v (12 1 30 2v |40 2 42 2 - 91 23 3 -
bankaccount-simple-lock 2[ 50 ()| 45 3 AV 71 0 80 0v |31 0 60 0v |62 0 73 O - |24 0 53 0 -
bluetooth 5/ 87 ()38 3 |A/| 42 0 630v|[14 0310 -[360 630 v |11 0 310 -
pool-simple-2 8/298 (8855 3 |Lv| 30 158 2v| 00 20-[291 85 2 v |00 20 -
Total [90] T T [ [588 72 88 35 54 47|45 677 61 |27 505 22
#T: No. of Traces in BenchmarkLOC: Lines of Codé& AIT: Average No. of Instructions in a Trace
ds. Basic Encoding cs Control-Sensitive Encodinghs:  Hazard-Sensitive Encoding
S: Slice Size / Trace Size V:  No. of Variables in Slice / No. afidbles in Trace
w:  Average o:  Standard Deviation
RB: Reflects Concurrency Bug  AV:  Atomicity Violation SB: Seatial Bug
DR: Data Race OV: Order Violation LV: Linearizability Vidian

@ LOC excluding comments and blank lines; LOC in parentheszasstated i [16].

Table 1: Experimental comparison of sensitivity-configianas for slicing

Tools that attempt to minimize the number of context switglseich as M TRACE
[11] and TINERTIA [12], are orthogonal to the approach presented in this paper

Many techniques for detecting race conditions or atomfedsializability violations
are geared towards specific bug characteristics[9,2%1Mjlarly, dynamic techniques
such agralcon [23] andUnicorn [22] rely on bug patterns. Our approach encodes data-
dependencies rather than relying on bug patterns or spbaificharacteristics. Recent
work [26] uses mining of failing and passing traces to isokatroneous sequences of
statements. Our technique only considers failing traces.

AFIX [13] and GONCURRENCYSWAPPER([1] automatically fix concurrency-related
errors. The latter uses error invariants to generalize eatirerror trace to a partially
ordered trace, which is then used to synthesize a fix. Thisoagh may potentially
benefit from our more fine-tuned trace encoding that enabtesiavariants to capture
concurrent data dependencies.

15



6

Conclusion

We proposed to augment error invariants with informatioawbnter-thread data de-
pendency and hazards to capture a broad range of concurbegsy Our technique
generates sound slices of concurrent error traces, egat#ivelopers to quickly isolate
and focus on the relevant aspects of error traces. We prbatthie reported slices are
sound and sufficient to trigger the failure. The experimeataluation of our proto-
type implementation showed that the approach is effectidesggnificantly reduces the
amount of code that needs to be inspected.
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A Proofs

Theorem 1. Let P be a (concurrent) error trace foy of lengthk and letly, I ...,
I;—1, Ix41 be error invariants (withly = true and I, = false) obtained from an
inductive sequence interpolant fasenc(ny), . . ., csenc(nyg), ¥. Let@ be the slice ob-
tained fromP by removing each sub-paffi, j] for whichI;_; is inductive. Ther) is
a sound control-sensitive slice fét.

Proof ((sketch))Let Jy,...,Jy+1 be the sequence interpolant fegenc(r) corres-
ponding to the error invariar, . . ., I+1. We show by induction over the length Bf
that it is also a sequence interpolantéet(P) (wherex;:=¢(x; ) is replaced by;:=x;

in P). Our claim holds trivially for the base case, sinfe= true andJ;,; = false.

Assume that/;_; Aenc(P)[j] = J; for 1 < j <. We distinguish the following cases:

1. If stmtp[i] is an assignment without@function, thencsenc(n;) = enc(n;) and
Ji A enc(ni) = Jit1-

2. Letstmtsp|i] be the conditiorR. Sincecsenc(n;) = true, it holds that/; = J;;1,
and therefore alsd; A enc(n;) = Jiy1.

3. Letstmtsp[i] be the assignment;:=¢(x;) at noden;, and letstmtsp[j] be the
statement by whiclx; is assigned at node;. If J; = guard(n;) then J; A
enc(n;) = Jiy1. Otherwise,J;+1 cannot depend oanc(n;), andJ; = Jii1;
thus.J; A enc(ni) = Jit1.

Since the error invariantg), I, . . ., I, I+, are derived from a sequence interpolant,

and fragments

stmtspl[i, j] are only sliced iff,_; can replacd; as an error invariant, we have for ev-

erystmtsg[i] = stmtsp[j] that the states reachable from an initial stateswiatsg[1, ¢]

areinl;, i.e.,@ is a sound slice for the error tra¢e

It remains to show thay is control-sensitive. First, we observe the following prop
erties of sequence interpolants:

(a) If an assignmenitmtsp[i] = x;:=e is relevant, then/;;; must contain a non-
redundant occurrence gf, since otherwisd; = J;;1.

(b) Conversely, ifJ; contains a non-redundant occurrencexpfind J;,; does not,
thenstmtsp[j] must be relevant.

(c) If stmtsp[j] is an assignment defining andI; refers to a previous versiar de-
fined beforestmtsp|j], thenl; ;1 must not contaim;, sincel;1; otherwise violates
the condition that interpolants must only refer to sharathides; in particular, that
means thattmtsp[j] must not be sliced.

Assume thastmtsp[i] = x;:=e is relevantand in scope of an assumptiontsp[j].
ThenJ,; contains; by observation (a) above. Since the program executiosaches
the exit node of the main thread befabds assertedP must eventually traverse an ar-
biter node (representing the end of the scopgmatsp[j] or a context switch) annotated
with the statemenstmtsp|[l]. The value ok; is propagated either directly (in which case
Jj contains;) or via a sequence of assignments (in which cassontains a variable
which replace; by means of a relevant assignment in the same scope, asrediai
observation (b) above) wamtsp[i]. Consequently/; containsk; (ory).
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The statemenitmtsp [{] contains the premisguard(n;) and replaces; (y, respec-
tively) with a newer version of the variable. Accordingly, 1 must not contair; (or
y). ThereforeJ; = guard(n;).

Sinceguard(n;) is not modified bystmtsp[i, I], it must also be implied by;_; in
order to be propagated th_;. By the soundness argument abolie,; is established
by a prefix ofstmtsg[1, j].

Theorem 2. Let P be a concurrent error trace and &€} be the slice obtained fro®
as explained in Sectidn 3.2. Thénis a sound hazard-sensitive sliceof

Proof ((sketch))Assume thastmtsg [k] = stmtsp[i] (at noden;) and there is an inter-
thread data-dependency betwaentsp [;] (at noden;) andstmtsp|[i].

— Assume thastmtspli] is a read access tg i.e., rd(x,n;). RAW dependencies
are readily handled by the SSA encoding. The remaining WABtddencies are
encoded in ther-function of the arbiter node, for n; (which assigns the variable
x; used instmtsp[i]). If in; refers tox; (i.e., the value ok, is relevant instmtsp[i])
then ther-node is included in the slice (if not, the data-dependerasyrio impact
on the failure of the trace).

Formula[T) requires that every nodee P that writes tax is either visited before
the most recent write accessxar after the read accessmtsp[i]. Assume that
hb(m, n;) in P. Thenwar,(n;, m) evaluates tdalse, and the interpolant; must
imply wr(x, m), since otherwisevar,(m,n;) in the premise[{[7) of Formul&](6)
cannot be discharged. The predicatéx, m) can only be introduced into the inter-
polation sequence througkenc(m), and therefore node: cannot be sliced away.
If hb(n;, m) in P, then the premise @lut; can only be discharged byt (x, m) con-
tributed byhb(n;, m). Consequently, if node: is not included, the final interpolant
cannot befalse.

— Assume thastmtsp|[i] is a write access te. Then there must also be a relevant
read access twin ). The encoding of the correspondinignode will enforce that
all write accesses conflicting witimtsp[¢] are included in the trace.

B Case Study: Lock-free Concurrent Data Structure

In the following, we discuss benchmapkol_simple_2 from Table1 in more depth as it
demonstrates that, in general, both control and hazarsitseninformation is needed
to obtain useful bug explanations.

Benchmarlpool_simple_2 was provided by Andreas Haas at University of Salzburg,
as a real-world example of a linearizability bug in concaotréata structures. It com-
prises a faulty implementation of a concurrent data stnedhat stores objects in a pool.
Listing[6 shows a simplified version of the actual source d¢beiewe analyzed. In order
to reduce contention, objects that are inserted into thid @ stored in two different
stacksts[0] andts[1]. Each timepool.ins is called, a stack will be picked randomly and
the passed value will be stored in the selected stack. Thdrebamount of conflicting
operations from different threads at each concurrent datatare is reduced. In order
to further reduce contention, one can add more stacks.
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treiber_stack_tx ts[2]; void threadl () {
void pool.ins(int v) { pool.ins(1);
/1 we assume that v != EMPTY pool_rem ();
int idx = random()%2;
ts_push(&ts[idx], v);
void thread2 () {

pool.ins(2);
int v = pool_rem();
int pool_rem() { assert(v != EMPTY);
int idx = random()%2; }
for (int i = 0; i< 2; i++) {

(
i
int v = ts_pop(&ts[(idx+i)%2]);
if (v !'= EMPTY) return v;

return EMPTY;

Fig. 6: Faulty thread pool implementation based on Treitanks

{ts_top[0] = —1} {ts_top[0] > 0}

[ts_top[0]=-1] | way - > ts,lop[O]:ZO:
ts_push(&ts[0], 2) | . | ts-pop(&ts[1])
4 ctrl
. [ts_top[0] =-1] - -~ 7 - [ > return EMPTY
2 ts_push(&ts[1], 1) ! ts_pop(&ts[0]) | " tspop(&s(1]) -

Fig. 7: Error trace of program in Figl 6 with dependencies.{[denote conditions)

The pool_rem operation of the pool may incorrectly return the designaiaide
EMPTY although the pool is hot empty (checked via the assertiothrigad2). The
problem can occur whepool_rem is called and, for example, sta¢d{1] is empty but
ts[0] is not. Figurél’ shows a corresponding faulty program exacLitVe describe the
explanation our tool provides for one of the faulty tracesagated for the pool example.
To highlight the problematic dependencies in the executi@mneed to inspect the trace
at instruction level, as the interferences are not refleatdke level of the overlapping
procedure calls. The implementation of tineiber_stack data-structure uses the entry
ts_top[i] to store the index of the top element of ifestack. The value ab_top[i] is —1
if the corresponding stack is empty. The write access todheahstack is implemented
using an atomicompare-and-swapperation (guaranteeing exclusive access to the top
of the stack), which only succeeds if no other thread integfevith the write operation.
As shown in Listind bpool_rem iterates over all stacks to check whether one of them
contains an element that can be removed.

In the generated trace, the assertion thadp[i] must be—1 for all stacks if the pool
is reported to be empty fails. The statements in Figlire 7 anegp the slice reported by
our tool and highlight the underlying problem: thréBdpushes an element onto stack
0 (ts_top[0]:=0) afterthreadl: has determined that the stack is empty. This is captured
by the anti-dependency between the statemjentsp[0]=-1] andts_top[0]:=0 (denoted
by thewar edge). Thread? then proceeds to remove the element previously pushed by
T, onto stackl. Consequently, thredf, finds stack 1 empty and reports that the pool
is empty (based on a stale valuetsftop[0]), even though stack O still contains one
element. This is captured by the control-dependency betywe¢op[0]=-1] andreturn
EMPTY (denoted by thetrl edge). Thus, even though the assignmenbp[0]:=0 is
implemented as an atomic compare-and-swap operation iadtual code, this does
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not guarantee correctness of the lock-free implementati@operatiorpool_rem is
notlinearizable since its effect is not instantaneous.

The core of the problem is accurately reflected by the cosaokitive slice gen-
erated by our toolteturn EMPTY is necessary to satisfy the premise of the assertion,
andts_top[0]:=0 must be included to contradict the conclusion. The retuatestent is
control-dependent ofts_top[0] = -1], and the explanation therefore includes the initial-
ization ofts_top[0].

While the control-sensitive slice that our tool computessimt explicitly include
the conditionts_top[0] = -1], it is reflected by the error invariarnt_top[0] = —1. This
information is explicit in the hazard-sensitive slice gexted by our tool, which in-
cludes the anti-dependent statemdtgtsop[0] = -1] in thread7> andts_top[0]:=0 in
threadT. Notably, the control and hazard-sensitive slice is onlygimally longer than
the control-sensitive slice: the former contains 264 ingions, whereas the latter con-
tains 255 instructions, or 28% of the 924 instructions ofdhginal trace. In addition,
our tool drops roughly 44% of the variables of the originats.
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