Abstract
We investigate decoupling abstractions, by which we seek to simulate (i.e. abstract) a given system of ordinary differential equations (ODEs) by another system that features completely independent (i.e. uncoupled) sub-systems, which can be considered as separate systems in their own right. Beyond a purely mathematical interest as a tool for the qualitative analysis of ODEs, decoupling can be applied to verification problems arising in the fields of control and hybrid systems. Existing verification technology often scales poorly with dimension. Thus, reducing a verification problem to a number of independent verification problems for systems of smaller dimension may enable one to prove properties that are otherwise seen as too difficult. We show an interesting correspondence between Darboux polynomials and decoupling simulating abstractions of systems of polynomial ODEs and give a constructive procedure for automatically computing the latter.
This work was supported by the Air Force Research Laboratory (AFRL) through contract number FA8750-15-1-0105 and the Air Force Office of Scientific Research (AFOSR) under contract numbers FA9550-15-1-0258 and FA9550-16-1-0246.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
By this we understand a finite expression in terms of polynomials and elementary functions such as \(\sin ,\cos ,\exp ,\ln \), etc.
- 2.
i.e. p is a first integral if \(\mathfrak {L}_f(p) = \lambda p\) where \(\lambda =0\).
- 3.
When q is a constant, the Darboux polynomial is trivial [11, Definition 2.14]. In this paper we will generally be interested in the non-trivial case.
References
Abrial, J.-R., Su, W., Zhu, H.: Formalizing hybrid systems with Event-B. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 178–193. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30885-7_13
Bak, S., Bogomolov, S., Johnson, T.T.: HYST: a source transformation and translation tool for hybrid automaton models. In: HSCC, pp. 128–133. ACM (2015)
Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliable Comput. 4(4), 361–369 (1998)
Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975). doi:10.1007/3-540-07407-4_17
Conti, R., Galeotti, M.: Totally bounded cubic systems in \(\mathbb{R}^2\). In: Macki, J.W., Zecca, P. (eds.) Dynamical Systems. LNM, vol. 1822, pp. 103–171. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45204-1_2
Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Springer, Heidelberg (2006)
Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 279–294. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8_19
Giannakopoulou, D., Méry, D. (eds.): FM 2012. LNCS, vol. 7436. Springer, Heidelberg (2012)
Ginoux, J.M.: Differential Geometry Applied to Dynamical Systems. World Scientific Series on Nonlinear Science, vol. 66. World Scientific, Singapore (2009)
Girard, A., Pappas, G.J.: Approximate bisimulation: a bridge between computer science and control theory. Eur. J. Control 17(5–6), 568–578 (2011)
Goriely, A.: Integrability and Nonintegrability of Dynamical Systems. Advanced Series in Nonlinear Dynamics. World Scientific, Singapore (2001)
Hale, J.K., LaSalle, J.P.: Differential equations: linearity vs. nonlinearity. SIAM Rev. 5(3), 249–272 (1963)
Han, Z., Krogh, B.: Reachability analysis of hybrid control systems using reduced-order models. In: 2004 American Control Conference, Proceedings of the 2004, vol. 2, pp. 1183–1189, June 2004
Jeannin, J.-B., Ghorbal, K., Kouskoulas, Y., Gardner, R., Schmidt, A., Zawadzki, E., Platzer, A.: A formally verified hybrid system for the next-generation airborne collision avoidance system. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 21–36. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0_2
Matringe, N., Moura, A.V., Rebiha, R.: Generating invariants for non-linear hybrid systems by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 373–389. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15769-1_23
Nedialkov, N.S.: Interval tools for ODEs and DAEs. In: 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN), p. 4, September 2006
Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of ODEs. SIAM J. Numer. Anal. 45(1), 236–262 (2007)
Pappas, G.J.: Bisimilar linear systems. Automatica 39(12), 2035–2047 (2003)
Platzer, A.: A complete uniform substitution calculus for differential dynamic logic. J. Autom. Reasoning, 1–47 (2016)
Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance maneuvers: a case study. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 547–562. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05089-3_35
Robinson, J.C.: An Introduction to Ordinary Differential Equations. Cambridge University Press, Cambridge (2004)
Sankaranarayanan, S.: Change-of-bases abstractions for non-linear hybrid systems. Nonlinear Anal. Hybrid Syst. 19, 107–133 (2016)
Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. Formal Methods Syst. Des. 32(1), 25–55 (2008)
Sankaranarayanan, S., Tiwari, A.: Relational abstractions for continuous and hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 686–702. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_56
Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, New York (1994)
Tarski, A.: A decision method for elementary algebra and geometry. In: Bulletin of the American Mathematical Society, vol. 59 (1951)
Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics, vol. 140. American Mathematical Society, Providence (2012)
Zhao, H., Yang, M., Zhan, N., Gu, B., Zou, L., Chen, Y.: Formal verification of a descent guidance control program of a lunar lander. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 733–748. Springer, Heidelberg (2014). doi:10.1007/978-3-319-06410-9_49
Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying chinese train control system under a combined scenario by theorem proving. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 262–280. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54108-7_14
Acknowledgements
The authors would like to thank the anonymous reviewers for their careful reading and judicious critique and extend their thanks to Dr. André Platzer at Carnegie Mellon University for his technical questions and helpful insights into differential ghosts.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Sogokon, A., Ghorbal, K., Johnson, T.T. (2016). Decoupling Abstractions of Non-linear Ordinary Differential Equations. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds) FM 2016: Formal Methods. FM 2016. Lecture Notes in Computer Science(), vol 9995. Springer, Cham. https://doi.org/10.1007/978-3-319-48989-6_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-48989-6_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48988-9
Online ISBN: 978-3-319-48989-6
eBook Packages: Computer ScienceComputer Science (R0)