Skip to main content

A Quantum Annealing Approach to Biclustering

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10071))

Included in the following conference series:

  • 634 Accesses

Abstract

Several problem in Artificial Intelligence and Pattern Recognition are computationally intractable due to their inherent complexity and the exponential size of the solution space. One example of such problems is biclustering, a specific clustering problem where rows and columns of a data-matrix must be clustered simultaneously. Quantum information processing could provide a viable alternative to combat such a complexity. A notable work in this direction is the recent development of the D-Wave™  computer, whose processor is able to exploit quantum mechanical effects in order to perform quantum annealing. The question motivating this work is whether the use of this special hardware is a viable approach to efficiently solve the biclustering problem. As a first step towards the solution of this problem, we show a feasible encoding of biclustering into the D-Wave™  quantum annealing hardware, and provide a theoretical analysis of its correctness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to the quantum adiabatic theorem, a quantum system that begins in the non-degenerate ground state of a time-dependent Hamiltonian will remain in the instantaneous ground state provided the Hamiltonian changes sufficiently slowly.

References

  1. Ayadi, W., Elloumi, M., Hao, J.: Bimine+: An efficient algorithm for discovering relevant biclusters of DNA microarray data. Knowl. Based Syst. 35, 224–234 (2012)

    Article  Google Scholar 

  2. Badea, L.: Generalized clustergrams for overlapping biclusters. In: IJCAI, pp. 1383–1388 (2009)

    Google Scholar 

  3. Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A: Math. Gen. 15(10), 3241–3253 (1982)

    Article  MathSciNet  Google Scholar 

  4. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: The order-preserving submatrix problem. J. Comput. Biol. 10(3–4), 373–384 (2003)

    Article  Google Scholar 

  5. Bicego, M., Lovato, P., Ferrarini, A., Delledonne, M.: Biclustering of expression microarray data with topic models. In: International Conference on Pattern Recognition (ICPR2010), pp. 2728–2731 (2010)

    Google Scholar 

  6. Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors. ArXiv e-prints, June 2014

    Google Scholar 

  7. Cheng, Y., Church, G.: Biclustering of expression data. In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology (ISMB00), pp. 93–103 (2000)

    Google Scholar 

  8. Dahl, E.D.: Programming with D-Wave: Map Coloring Problem (2013). http://www.dwavesys.com/sites/default/files/Map%20Coloring%20WP2.pdf

  9. Denchev, V.S., Boixo, S., Isakov, S.V., Ding, N., Babbush, R., Smelyanskiy, V., Martinis, J., Neven, H.: What is the computational value of finite-range tunneling? Phys. Rev. X 6(3), 031015 (2016)

    Google Scholar 

  10. Denitto, M., Farinelli, A., Franco, G., Bicego, M.: A binary factor graph model for biclustering. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 394–403. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44415-3_40

    Google Scholar 

  11. Dhillon, I.: Coclustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 269–274 (2001)

    Google Scholar 

  12. Dolnicar, S., Kaiser, S., Lazarevski, K., Leisch, F.: Biclustering : overcoming data dimensionality problems in market segmentation. J. Travel Res. Q. Publ. Travel Tourism Res. Assoc. 51(1), 41–49 (2012)

    Google Scholar 

  13. Farhi, E., Goldstone, J., Gutmann, S.: Quantum Adiabatic Evolution Algorithms versus Simulated Annealing. eprint, January 2002. arXiv:quant-ph/0201031

  14. Finnila, A.B., Gomez, M.A., Sebenik, C., Stenson, C., Doll, J.D.: Quantum annealing: A new method for minimizing multidimensional functions. Chem. Phys. Lett. 219, 343–348 (1994)

    Article  Google Scholar 

  15. Flores, J.L., Inza, I., Larranaga, P., Calvo, B.: A new measure for gene expression biclustering based on non-parametric correlation. Comput. Methods Programs Biomed. 112(3), 367–397 (2013)

    Article  Google Scholar 

  16. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355–5363 (1998)

    Article  Google Scholar 

  17. Kochenberger, G., Hao, J., Glover, F., Lewis, M., Lü, Z., Wang, H., Wang, Y.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28(1), 58–81 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kurihara, K., Tanaka, S., Miyashita, S.: Quantum annealing for clustering. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 321–328. UAI 2009, AUAI Press, Arlington, Virginia, United States (2009)

    Google Scholar 

  19. Madeira, S., Oliveira, A.: Biclustering algorithms for biological data analysis: a survey. IEEE Trans. Comput. Biol. Bioinform. 1, 24–44 (2004)

    Article  Google Scholar 

  20. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.: Survey of multiobjective evolutionary algorithms for data mining: Part ii. Evol. Comput. IEEE Trans. 18(1), 20–35 (2014)

    Article  Google Scholar 

  21. Neven, H., Rose, G., Macready, W.G.: Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization, ArXiv e-prints, April 2008

    Google Scholar 

  22. Oghabian, A., Kilpinen, S., Hautaniemi, S., Czeizler, E.: Biclustering methods: Biological relevance and application in gene expression analysis. PLoS ONE 9(3), e90801 (2014). http://dx.doi.org/10.1371%2Fjournal.pone.0090801

    Google Scholar 

  23. O’Gorman, B., Babbush, R., Perdomo-Ortiz, A., Aspuru-Guzik, A., Smelyanskiy, V.: Bayesian network structure learning using quantum annealing. Eur. Phys. J. Spec. Top. 224(1), 163–188 (2015). http://dx.doi.org/10.1140/epjst/e2015-02349-9

    Article  Google Scholar 

  24. Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)

    Article  Google Scholar 

  25. Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M., Smelyanskiy, V.N.: A case study in programming a quantum annealer for hard operational planning problems. Quantum Inform. Process. 14, 1–36 (2015)

    Article  MATH  Google Scholar 

  26. Santoro, G.E., Tosatti, E.: Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J. Phys. A Math. Gen. 39(36), R393–R431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tu, K., Ouyang, X., Han, D., Honavar, V.: Exemplar-based robust coherent biclustering. In: SDM, pp. 884–895. SIAM (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Di Pierro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bottarelli, L., Bicego, M., Denitto, M., Di Pierro, A., Farinelli, A. (2016). A Quantum Annealing Approach to Biclustering. In: Martín-Vide, C., Mizuki, T., Vega-Rodríguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2016. Lecture Notes in Computer Science(), vol 10071. Springer, Cham. https://doi.org/10.1007/978-3-319-49001-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49001-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49000-7

  • Online ISBN: 978-3-319-49001-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics