Skip to main content

Integrating New Refinement Operators in Terminological Decision Trees Learning

  • Conference paper
  • First Online:
Knowledge Engineering and Knowledge Management (EKAW 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10024))

Included in the following conference series:

Abstract

The problem of predicting the membership w.r.t. a target concept for individuals of Semantic Web knowledge bases can be cast as a concept learning problem, whose goal is to induce intensional definitions describing the available examples. However, the models obtained through the methods borrowed from Inductive Logic Programming e.g. Terminological Decision Trees, may be affected by two crucial aspects: the refinement operators for specializing the concept description to be learned and the heuristics employed for selecting the most promising solution (i.e. the concept description that describes better the examples). In this paper, we started to investigate the effectiveness of Terminological Decision Tree and its evidential version when a refinement operator available in DL-Learner and modified heuristics are employed. The evaluation showed an improvement in terms of the predictiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The refinement operator was originally devised to consider \(\mathcal {ALC}\) expressiveness.

  2. 2.

    The length of a concept C, len(C) can be defined inductively as:

    • len(A) = len(\(\top \)) = len(\(\bot \)) = 1

    • len(\(\lnot D\)) = len(D) + 1

    • len(\(D \sqcap E\)) = len(\(D \sqcup E\)) = len(D) + len(E) + 1

    • len(\(\exists R.D\)) = len(\(\forall R.D\)) + 1.

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook, 2nd edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  2. Rettinger, A., Lösch, U., Tresp, V., d’Amato, C., Fanizzi, N.: Mining the semantic web - statistical learning for next generation knowledge bases. Data Min. Knowl. Discov. 24, 613–662 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fanizzi, N., d’Amato, C., Esposito, F.: Induction of concepts in web ontologies through terminological decision trees. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part I. LNCS, vol. 6321, pp. 442–457. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Rizzo, G., d’Amato, C., Fanizzi, N., Esposito, F.: Towards evidence-based terminological decision trees. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part I. CCIS, vol. 442, pp. 36–45. Springer, Heidelberg (2014)

    Google Scholar 

  5. Rizzo, G., d’Amato, C., Fanizzi, N.: On the effectiveness of evidence-based terminological decision trees. In: Esposito, F., Pivert, O., Hacid, M.-S., Rás, Z.W., Ferilli, S. (eds.) ISMIS 2015. LNCS, vol. 9384, pp. 139–149. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25252-0_15

    Chapter  Google Scholar 

  6. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Lehmann, J.: Dl-learner: learning concepts in description logics. J. Mach. Learn. Res. (JMLR) 10, 2639–2642 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. J. Web Semant. 9, 71–81 (2011)

    Article  Google Scholar 

  9. Lehmann, J., Haase, C.: Ideal downward refinement in the \(\cal{EL}\) description logic. In: Raedt, L. (ed.) ILP 2009. LNCS (LNAI), vol. 5989, pp. 73–87. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13840-9_8

    Chapter  Google Scholar 

  10. Klir, J.: Uncertainty and Information. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  11. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Mach. Learn. 78, 203–250 (2010)

    Article  MathSciNet  Google Scholar 

  12. Smarandache, F., Han, D., Martin, A.: Comparative study of contradiction measures in the theory of belief functions. In: 15th International Conference on Information Fusion, FUSION 2012, Singapore, pp. 271–277, 9–12 July 2012

    Google Scholar 

  13. Sentz, K., Ferson, S.: Combination of Evidence in Dempster-Shafer Theory, vol. 4015. Citeseer (2002)

    Google Scholar 

  14. Dubois, D., Prade, H.: On the combination of evidence in various mathematical frameworks. In: Flamm, J., Luisi, T. (eds.) Reliability Data Collection and Analysis. Eurocourses, vol. 3, pp. 213–241. Springer, Netherlands (1992)

    Chapter  Google Scholar 

  15. Deng, H., Runger, G.C.: Feature selection via regularized trees. In: The 2012 International Joint Conference on Neural Networks (IJCNN), 2012. IEEE (2012)

    Google Scholar 

Download references

Acknowledgements

This work fulfills the objectives of the PON 02005633489339 project “Puglia@Service - Internet-based Service Engineering enabling Smart Territory structural development” funded by the Italian Ministry of University and Research (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Rizzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Rizzo, G., Fanizzi, N., Lehmann, J., Bühmann, L. (2016). Integrating New Refinement Operators in Terminological Decision Trees Learning. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds) Knowledge Engineering and Knowledge Management. EKAW 2016. Lecture Notes in Computer Science(), vol 10024. Springer, Cham. https://doi.org/10.1007/978-3-319-49004-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49004-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49003-8

  • Online ISBN: 978-3-319-49004-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics