
Preprint – Accepted for publication, P. Abrahamsson et al. (Eds.): PROFES 2016, LNCS 

10027, pp. 487–494, 2016. DOI: 10.1007/978-3-319-49094-6_34 

An Industrial Case Study on Measuring the Quality of 

the Requirements Scoping Process  

Krzysztof Wnuk 

Software Engineering Research Lab, Department of Software Engineering Blekinge Institute of 

Technology Karlskrona, Sweden  

Krzysztof.Wnuk@bth.se 

Markus Borg 

 SICS Swedish ICT AB, Lund, Sweden 

Markus.Borg@sics.se 

Sardar Muhammad Sulaman  
Department of Computer Science, Lund University, Sweden 

sardar@cs.lth.se 
 

Decision making and requirements scoping occupy central roles in helping to 

develop products that are demanded by the customers and ensuring company 

strategies are accurately realized in product scope. Many companies experi-

ence continuous and frequent scope changes and fluctuations but struggle to 

measure the phenomena and correlate the measurement to the quality of the 

requirements process. We present the results from an exploratory interview 

study among 22 participants working with requirements management pro-

cesses at a large company that develops embedded systems for a global mar-

ket. Our respondents shared their opinions about the current set of require-

ments management process metrics as well as what additional metrics they 

envisioned as useful. We present a set of metrics that describe the quality of 

the requirements scoping process. The findings provide practical insights that 

can be used as input when introducing new measurement programs for re-

quirements management and decision making.   

Keywords: requirements engineering, software metrics, process improvement. 

1 Introduction  

Requirements Management (RM) [4] iteratively integrates the requirements elicitation 

and analysis results into the project management and development flows. RM also 

supports managing requirements during the product lifecycle and between the prod-

ucts. Large, globally operating software companies need to manage large quantities of 

features and requirements that continuously arrive from ever-changing markets [10].  

mailto:Krzysztof.Wnuk@bth.se
mailto:Markus.Borg@sics.se
mailto:sardar@cs.lth.se


 2 

Measuring and optimizing requirements identification, prioritization, definition and 

implementation processes is, in a market-driven context [10], crucial for achieving and 

sustaining competitive product growth [5].  

The process of selecting a subset of requirements for implementation within a given 

project is called scoping. Many software-intensive companies increase the flexibility 

of decision making by allowing scope fluctuations. Our previous work highlighted that 

large companies experience frequent scope fluctuations and have limited support in 

scope management [14]. The resulting late changes increase the need for improved 

monitoring and management capabilities that can evaluate the adequacy of the select-

ed requirements management process models. Despite that, most published work on 

requirements measurement focus on the attributes of requirements [2] rather than the 

requirements management process [1]. Some published process metrics include: i) 

how much value a software team delivers in every iteration [3], ii) the number of re-

quirements awaiting analysis, prioritization or decision, and iii) the lead time in each 

state for each user story [7]. 

 In this paper, we present the results from an exploratory interview-based case 

study among 22 participants working with the requirements management process at a 

large company that develops embedded systems for a global market. During semi-

structured interviews with mostly senior-level practitioners working with requirements 

gathering, prioritization, scope management, software resource planning and high-

level management, we investigated the following two research questions: 

RQ1: What are the current scope management process quality metrics used by the 

case company? 

RQ2: What scope management process quality metrics would the practitioners like to 

implement in the future?   

2 Case Company   

The case company is a large (5,000 employees) organization active in the telecommu-

nication domain, developing embedded systems for the global consumer market. As 

the inflow of new requirements is rapid, product management often needs to make 

unplanned scoping decisions [14]. The company utilizes the Software Product Lines 

concept [9]where different development projects contribute to an evolving common 

code base, also called a platform. The total number of features registered in the com-

pany’s database exceeds 10,000 and is steadily growing as new products are added to 

the product line, each containing on average 60 to 80 new features and associate up to 

20 system requirements per feature. Feature implementation is allocated to approxi-

mately 20 to 25 development teams (each team has from 40 to 80 developers).  

Features are managed based on a state machine depicted in Figure 1. When features 

are created, they are put into an administrative state called New Feature (NF). In the 

next step, features enter the process and are discussed at the M0 forum. This forum 

critically reviews if a proposed feature has a sponsor, sufficient business justification 

and is aligned with the current product and portfolio strategy. Many features are re-

jected at this stage mainly due to insufficient business justification or unclear defini-



tion. Next, a feature is promoted to the M1 state where it is prioritized against other 

features by scope owners using a one-dimensional prioritization based on business 

value. A feature could be returned to the M0 state for further refinement.  

At the next stage, called M2 in Figure 1, the development resources are consulted 

and implementation schedules are discussed and agreed upon. Each feature comes to 

this forum with a target delivery date that is discussed and adjusted depending on the 

current software development organization load and other responsibilities. Prototypes 

are used at this stage to provide more accurate effort estimates and possible delivery 

times. A pipeline tool is used at the M2 stage to control the resources and to schedule 

delivery of several hundreds of implementation running in parallel. After the M2 state, 

the development organization takes the main responsibility for the features which are 

promoted to the: Definition Ongoing (DO), Awaiting Execution (AE), Execution 

Started (ES), Execution Completed (EC), Awaiting Integration (AI) and Integrated (I). 

Transitions between any two states are in theory allowed, including backward transi-

tions. However, there is one optimal path without backward transitions through a state 

machine which is visualized with a dashed line in Figure 1. 

3 Research Methodology   

To gain deep understanding and explore different requirements management metrics  

at the case company, a flexible case study design was chosen [11] with semi-structured 

interviews as the method for data collection.  

     We started phase 1 by iteratively developing an interview instrument in collabora-

tion with four practitioners from the case company. Finally, two senior software engi-

neering researchers and two practitioners reviewed the 17 questions and they were 

grouped into 6 topics: background, business goals, current metrics, desired metrics, 

visualization, and open innovation. The interview instrument can be accessed online 

[12]. Note that the results reported in this paper are exclusively related to questions 

under topics 3 and 4 as well as background questions under topic 1. The remaining 

topics are covered in a separate publication [15]. 

 In the next step, we selected interview respondents by using a combination of max-

Fig 1. The example history of three features. The first feature, marked with dashed lines 

was implemented. The second feature marked with solid arrows was withdrawn. The third 

feature marked with dashed-dotted arrows was discarded. Also available at [13] . 



 4 

imum variance and convenience sampling [11] to cover as many views on the re-

quirements management process as possible. Twenty-two respondents participated in 

the study. Their average experience in working with requirements processes was 6,5 

years with the most experienced participant having almost 13 years of experience and 

the least experienced participant having about 3 years of experience [12].  

Prior to the interviews, we sent the questions to the participants to help them under-

stand the scope of the study and prepare for the discussions under the interviews. The 

first author then interviewed all participants individually, recorded and transcribed the 

interviews. The transcripts were sent to the interviewees to validate the content, and to 

enable clarifications where needed. 

As the industry partner requested a quick summary of the findings, we concluded 

the first phase with five senior managers in a seminar. During this seminar, the first 

author presented preliminary results from an initial analysis of the data. The seminar 

delivered early tangible outcomes and the discussions at the seminar also acted as a 

validation, i.e. a sanity check that the direction of our work was promising, and moti-

vated the deeper analysis in phase 2. 

Phase 2 involves the four steps of the systematic data collection and analysis. First, 

the first author divided the transcripts into chunks of text containing a few connected 

sentences. The second author then repeated the process for 4 of the interviews (21%), 

to validated that we had a reasonable level of granularity. The authors compared the 

chunk sizes, and agreed on simple rules resulting in the creation of a chunk for each 

relevant proposition (i.e. what is believed, doubted, etc.) expressed in the interviews. 

The first author then reiterated the remaining chunks to apply the rules.  

In the second step, the first and second authors collaboratively analyzed 11 of the 

interviews (48%) with the goal of developing a robust coding scheme. The first and 

second authors then independently coded the remaining 12 interviews (52%). The 

authors calculated an inter-rater agreement using Cohen’s Kappa [6] on the coding 

results. We achieved a Kappa score of 0.59, which we interpret as moderate agree-

ment on the coding scheme.  

In the third step of phase 2, we analyzed the coded data. The output from the cod-

ing step was synthesized by the first and second authors, and reviewed by the third 

author to provide further validation and observer triangulation. Finally, all authors 

prepared the manuscript for this research article. 

 

Validity. We discuss validity issues based on the guidelines by Runeson et al. [11]. 

We attempted to mitigate the interpretive validity threats by asking interviewees to 

check the interview transcripts. Threats to evaluative validity are not applicable in this 

case due to exploratory nature of the study and a lack of evaluative purpose. Threats 

to description validity were addressed by recording the interview sessions and tran-

scribing them. The transcripts were sent back to the interviewees for validation. 

Threats to theoretical validity have a minimal impact on this study due to its explora-

tive nature and therefore a lack of theory, specific hypotheses, or conceptual frame-

works to be validated. Moreover, we minimized the bias of unclear questions by itera-

tively developing the interview guidelines. The questions were formulated in a way to 

minimize the possibility of imposing a particular answer. We took precautions that the 



interviewer expressed neutrality when asking the questions and therefore the risks of 

reflexivity are minimized.  

Due to an exploratory nature of this study, exploring to what extent our conceptual-

izations and conclusions derived from the interviews are correct remains to a certain 

degree unclear and calls for inspection by other researchers in the field as well as fol-

low-up studies. Since the investigated problem originates from the case company, we 

can for sure claim that it is an authentic research problem.  

We report that both internal and external generalizability are strongly limited in 

this case, mainly due to only one company involved. The paper's exclusive focus on an 

individual company narrows the applicability of the observations. Nevertheless, we 

attempted to gather as many perspectives as possible on the studied phenomenon by 

inviting participants with various roles and experiences from the case company.  

4. Results   

Table 1 summarizes the 26 scope management process quality metrics identified in the 

study. Among them, only five metrics are measured and 21 are needed or requested 

metrics. The five currently used metrics are: the number of backward transitions (Q1) 

and their reasons (Q2), the software design quality and if the process actually 

prioritizes the most important features from the portfolio planning (Q4) and customer 

perspectives (Q5).  

     The requested metrics include the impact of priorities on the lead-times (Q6 and 

Q7) as well as the impact of high priority features on low priority features (Q8). The 

accuracy of estimates and its impact on the efficiency of requirements analysis or def-

initions (Q9 and Q12) clearly indicate that focusing plainly on speed may not give the 

desired effects as quality of the work should not be compromised.  

Several metrics also describe the features and their nature in terms of testability or 

complexity, e.g. Q10 and Q11. These metrics should be introduced during the re-

quirements analysis phase and used as extensions to the widely accepted aspects, e.g. 

correctness, ambiguity or completeness. Q10 and Q11 further detail requirements on 

system test metrics suggested by Petersen and Wohlin [8]. 

Metrics Q14 and Q15 focus on how many times or why a feature was sent back in 

the process due to unclear information. This indicates that some stages of the process 

may either not do their work rigidly or receive appropriate input from earlier stages - 

thus delivering requirements of insufficient quality. 

Similarly, our respondents would like to measure how many times a feature is 

moved between the releases (Q13) and why they were moved, which could indicate 

either: i) issues with accurate release planning or ii) several strategic changes after the 

release plan is agreed upon. Metric Q13 provides interesting input for the iterative 

release planning approaches that are based on continuous release re-planning and 

timely responses to a frequently changing market situation.  The number of release 

changes could be correlated with how many times previously set delivery dates are 

altered (Q25). 



 6 

Two requested metrics focus on the “waste” generated by analyzing unimplemented 

features (Q18 and Q19) while one metric (Q20) focuses on the effort saved on unim-

plemented features or software definitions in relation to the previous (waterfall) way 

of working. Two other requested metrics correlate the defined scope with the overall 

product strategy (Q24) or increased sales from successful products (Q23).  

Finally, the amount of changes in the open source code each feature requires (Q22) 

in combination with the percentage of effort put on legacy work while developing new 

features (Q26) can bring interesting insights regarding the selected sourcing strategy 

and also suggestions about the amount of open source code in the product. 

Table 1. Elicited metrics. Respondents are coded with Greek alphabet letters.  

ID Metric Definition Mentioned or 

need for/  

Respondent 

Q1 How many times a feature is sent backwards in the process Measured,  ZETA 

Q2 Why features are sent backwards in the process from the M2 forum Measured,  RHO 

Q3 The quality of the software design and the associated user interaction 

features 

Measured, TAU 

Q4 The overlap or potential discrepancies between the early product defini-

tions from the portfolio planning and the product scope at the TG Com-

mit 

Measured, SIGMA, 

ETA 

Q5 Priority levels of highly requested features by various stakeholders. Measured, KAPPA 

Q6 The correlation between the priorities set and the time needed to imple-

ment the features or the time needed for definition or implementation. 

Need for, GAMMA, 

LAMBDA 

Q7 The frequency of priority changes in relation to the dev. performance  Need for,  PI 

Q8 How new-coming highly-prioritized features impact low-priority features 

(e.g. low-prioritized get delayed)   

Need for, RHO 

Q9 The accuracy of the estimates in relation to the efficiency of the process.  Need for, ZETA 

Q10 The testability of the “vertical features” (features involving several tech-

nical areas) and their impact on various technical areas.   

Need for, THETA 

Q11 The complexity of the features that are sent to the definition (cf. DO in 

Figure 1) in terms of their impact on other organizations.   

Need for, THETA 

Q12 The quality of feature definitions and estimates. Need for, KAPPA 

Q13 How many times features are moved between the releases and why. Need for: BETA, 

ETA, KAPPA, MY 

Q14 How many times (and why) the features are send back from the M1 to 

the M0 forum. 

Need for, ALFA and 

CHI 

Q15 How many times (and why respondent CHI) features are send back from 

M2 to M1 forum (respondents JOTA and LAMBDA), 

Need for, CHI, 

JOTA, LAMBDA 

Q16 How many time a feature is resubmitted at the M0 forum due to unclear 

information or quality issues 

Need for, LAMBDA 

Q17 The reasons why features are send back from the M0 forum to redefini-

tions 

Need for, RHO 

Q18 How much “waste” the process is producing (analyzed but unimplement- Need for, PHI, CHI 



ed features, e.g.  how many features are withdrawn at each stage). 

Q19 The “waste of the scope” after the features are promoted to the definition. Need for, KSI 

Q20 The effort saved on unimplemented features or software definitions in 

relation to the previous (waterfall) way of working. 

Need for, PHI 

Q21 The stability of the scope after the customer acceptance test. Need for, KAPPA, 

NY 

Q22 How many changes to the OSS code each feature requires and when to 

share these changes with the open source community. 

Need for: PI 

Q23 If the planned scope later implemented in the products is meeting the set 

sales and customer satisfaction business targets 

Need for: ETA  

Q24 To what degree the features that are created in the process reflect the 

overall strategy of the company. 

Need for: PI 

Q25 How many times previously set delivery dates altered (caused by e.g. 

resource shortages or changed priorities).   

Need for: ETA 

Q26 The percentage of effort put on legacy work  Need for:  CHI 

6. Implications and Conclusions 

Our study delivers several implications for research and practice. Firstly, the fact that 

we elicited 26 quality metrics is a clear indication that it is challenging to come up 

with an accurate set of metrics to capture the important aspects the requirements man-

agement process. Secondly, the fact that 21 requested quality metrics ideas were col-

lected brings a possible interpretation that more focus should be directed towards 

complementing efficiency metrics with quality metrics. For example, quickly deliver-

ing features with minimal process waste is highly desired, as long as these features 

will provide value to the end customers and positively realize product strategies, see 

for example metrics Q23 and Q24.  

     Thirdly, requirements prioritization for agile development should go beyond popu-

lar one-dimensional priority or urgency lists and be correlated with measures that take 

the holistic perspective on prioritization (see e.g. metrics Q5, Q6 and Q8) and inte-

grate it with product and portfolio planning.   

     Fourthly, measuring lead-times and delays on the interface between the require-

ments and development organizations appears to be equally important as measuring 

the requirements process lead-times. Additional significant factor is to measure back-

ward transitions and understand why they happen (see metrics Q1, Q2, Q14, Q16 and 

Q17) or transitions between the releases (Q13). Fifthly, measuring the number of fea-

tures in each state should be complemented with the derived measures of the ratios 

between the features in two states. This provides useful indications for rapid identifi-

cation of process bottlenecks.  

   In future work, we plan to create a conceptual model of measuring and tracking 

potential waste in requirements management and decision making processes. Moreo-

ver, we plan to conduct additional case studies at other companies that record the 

information during their requirements management processes. Such empirical studies 

would help us in expanding our knowledge about the applicability of our model.   



 8 

 

Acknowledgements. This work is supported by the IKNOWDM project from the 

Knowledge Foundation in Sweden (20150033). 

References 

1. Ambriola, V., & Gervasi, V. (2000). Process metrics for requirements analysis. In Soft-

ware Process Technology (pp. 90–95). Springer. 

2. Costello, R. J., & Liu, D.-B. (1995). Metrics for Requirements Engineering. J. Syst. Softw., 

29(1), 39–63.  

3. Feyh, M., & Petersen, K. (2013). Lean Software Development Measures and Indicators-A 

Systematic Mapping Study. In Lean Enterprise Soft. and Systems (pp. 32–47). Springer. 

4. Hood, C., Wiedemann, S., Fichtinger, S., & Pautz, U. (2007). Requirements Management: 

The Interface Between Requirements Development and All Other Systems Engineering 

Processes. Springer Berlin Heidelberg.  

5. Höst, M., Regnell, B., och Dag, J. N., Nedstam, J., & Nyberg, C. (2001). Exploring bottle-

necks in market-driven requirements management processes with discrete event simula-

tion. Journal of Systems and Software, 59(3), 323–332.  

6. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categori-

cal data. Biometrics, 159–174. 

7. Mujtaba, S., Feldt, R., & Petersen, K. (2010). Waste and lead time reduction in a software 

product customization process with value stream maps. In 21st Australian Software Engi-

neering Conference (ASWEC), (pp. 139–148). 

8. Petersen, K., Wohlin, C. (2010) Measuring the flow in lean software development, Soft-

ware Practice and Experience, vol. 41, pp. 975-996.   

9. Pohl, K., Böckle, G., & Linden, F. J. van der. (2005). Software Product Line Engineering: 

Foundations, Principles and Techniques. USA: Springer-Verlag New York, Inc. 

10. Regnell, B., Svensson, R. B., & Wnuk, K. (2008). Can we beat the complexity of very 

large-scale requirements engineering? In Requirements Engineering: Foundation for Soft-

ware Quality (pp. 123–128). Springer.  

11. Runeson, P., Höst, M., Rainer, A., & Regnell, B. (2012). Case study research in software 

engineering guidelines and examples. John Wiley & Sons. 

12. The interview instrument can be accessed at 

http://serg.cs.lth.se/fileadmin/serg/InterviewQuestions.pdf   

13. Wnuk, K., Gorschek, T., Callele, D., Karlsson, E.-A., Regnell, B., & Ahlin, E. (2016). 

Supporting Scope Tracking and Visualization for Very Large-scale Requirements Engi-

neering-Utilizing FSC+, Decision Patterns, and Atomic Decision Visualizations, IEEE 

Transactions on Software Engineering, vol. 42, pp. 47-74.  

14. Wnuk, K., Regnell, B., & Karlsson, L. (2009). What happened to our features? Visualiza-

tion and understanding of scope change dynamics in a large-scale industrial setting. In Re-

quirements Engineering Conference, 2009. RE’09. 17th IEEE International (pp. 89–98).  

15.  Wnuk, K., Pfahl, D., Callele, D., & Karlsson, E. A. (2012). How can open source software 

development help requirements management gain the potential of open innovation: An ex-

ploratory study. In ACM-IEEE Int. Symposium on Empirical Software Engineering and 

Measurement (ESEM), 2012 (pp. 271–279).  

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32

