Skip to main content

Automated Piping with Standardized Bends in Complex Systems Design

  • Conference paper
  • First Online:
Complex Systems Design & Management (CSDM 2016)

Included in the following conference series:

Abstract

Combining subsystems to build a fully integrated product is a challenging task in complex systems design. The integration of flow components requires a fast creation and validation of different pipe route variants. In this article an algorithm for the automated generation of pipe routes in a given installation space is presented. The pipe route generation is constrained to the usage of prechosen (standardized) pipe bend sets. The routes are rule-based manipulated and evolved using a simulated annealing optimization scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This abbreviation is based on the German title Kegel=cone/Kegel=cone/Faßkreisbogen=inscribed angle.

References

  1. Voloshin, V.I. (ed.): Introduction to Graph Theory. Published by Nova Science Publishers Inc, New York (2009)

    MATH  Google Scholar 

  2. Bellman, R.: On a routing problem. Q. Appl. Math. 16, 87–90 (1958)

    MATH  Google Scholar 

  3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  4. Flloyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5, S. 345 (1962)

    Google Scholar 

  5. Hart, P.E., Nilsson, N.J., Raphael, B.: Correction to: a formal basis for the heuristic determination of minimum cost paths. SIGART Newslett. 37, 28–29 (1972)

    Google Scholar 

  6. Koh, C.-K., Madden, P.H.: Manhattan or non-Manhattan?: a study of alternative VLSI routing architectures. In: Proceedings of the 10th Great Lakes symposium on VLSI. ACM (GLSVLSI), S. 47–52 (2000)

    Google Scholar 

  7. Lee, C.Y.: An algorithm for path connections and its applications. In: IRE Transactions on Electronic Computers EC-10, vol. 2, S. 346–365 (1961)

    Google Scholar 

  8. Soukup, J.: Global router. In: Proceedings of the 16th Design Automation Conference, pp. 481–484. IEEE Press, Piscataway, NJ, USA (1979) (DAC ’79)

    Google Scholar 

  9. Ito, D. (Hrsg.): Robot vision: strategies, algorithms and motion planning. Nova Sci. (2009). ISBN 9781606920916

    Google Scholar 

  10. Latombe, J.C.: Robot Motion Planning. Springer (1990). (The Springer International Series in Engineering and Computer Science). ISBN 9780792391296

    Google Scholar 

  11. Szlapczynski, R.: An algorithm for path connections and its applications. J. Navig. 59, 27–42 (2006)

    Article  Google Scholar 

  12. Velden, C.V., Bill, C., Yu, X., Smith, A.: An intelligent system for automatic layout routing in aerospace design. Innov. Syst. Soft. Eng. 3, 117–128 (2007)

    Article  Google Scholar 

  13. Guirardello, R., Swaney, R.E.: Optimization of process plant layout with pipe routing. Comput. Chem. Eng. 30(1), 99–114 (2005). doi:10.1016/j.compchemeng.2005.08.009. ISSN 0098-1354

  14. Ito, T.: A genetic algorithm approach to piping route path planning. J. Intell. Manufact. 10, 103–114 (1999). doi:10.1023/A:1008924832167. ISSN 0956-5515

  15. Medjdoub, B.: Constraint-based adaption for complex space configuration in building services. J. Inf. Technol. Constr. 153–158 (2009)

    Google Scholar 

  16. Kang, S.-S., Sehyun, M., Han, S.-H.: A design expert system for auto-routing of ship pipes. J. Ship Prod. 15, 1–9 (1999)

    Google Scholar 

  17. Ikehira, S., Kimura, H.: Multi-objective genetic algorithms for pipe arrangement design. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2006), S. 1869–1870 (2006)

    Google Scholar 

  18. Ando, Y., Kimura, H.: An automatic piping algorithm including elbows and bends. In: International Conference on Computer Applications in Shipbuilding, S. 153–158 (2011)

    Google Scholar 

  19. Pahl, G. (Hrsg.), Beitz, W. (Hrsg.): Konstruktionslehre, Grundlagen erfolgreicher Produktentwicklung, Methoden und Anwendung. Springer (2003–2005)

    Google Scholar 

  20. Norm: DIN EN 10253-2:2008-09, Butt-Welding Pipe Fittings. Beuth Verlag (2008)

    Google Scholar 

  21. Norm: DIN 86009:2016-05, Exhaust Gas Lines on Ships—Steel Tubes. Beuth Verlag (2016)

    Google Scholar 

  22. Vogel, S.: Über Ordnungsmechanismen im wissensbasierten Entwurf von SCR-Systemen (to appear). Universität Stuttgart, Diss (2016)

    Google Scholar 

  23. Stiny, G.: Shape: Talking About Seeing And Doing. Mit Press (2006) http://books.google.de/books?id=xQpRAAAAMAAJ. ISBN 9780262195317

  24. Stiny, G., Gips, J., Stiny, G., Gips, J.: Shape Grammars and the generative specification of painting and sculpture. In: Segmentation of Buildings for 3DGeneralisation, Proceedings of the Workshop on generalisation and multiple representation. Leicester (1971)

    Google Scholar 

  25. Antonsson, E., Cagan, J.: Formal Engineering Design Synthesis. Cambridge University Press (2001)

    Google Scholar 

  26. Rudolph, S.: Übertragung von Ähnlichkeitsbegriffen. Universität Stuttgart, Habilitationsschrift (2002)

    Google Scholar 

  27. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer (1996). (The Virtual Laboratory). ISBN 9780387946764

    Google Scholar 

  28. Szykman, S., Cagan, J.: Synthesis of optimal nonorthogonal routes. J. Mech. Des. 118(3), 419–424 (1996). doi:10.1115/1.2826902

    Article  Google Scholar 

  29. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. In: Science 220, 4598 (13 May 1983), 671–680. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.4175

  30. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, (2008). (Kluwer international series in engineering and computer science: Robotics). http://books.google.de/books?id=UjWbvqWaf6gC. ISBN 9780387743158

  31. Smith, R.: ODE—Open Dynamics Engine. http://www.ode.org. Version: 2007. The Open Dynamics Engine (ODE) is a physics engine in C/C++. Its two main components are a rigid body dynamics and a collision detection

  32. Fitzpatrick, R.: Euclid’s Elements. Lulu.com, Book 3 (2007)

    Google Scholar 

  33. Kröplin, B., Rudolph, S.: Entwurfsgrammatiken-Ein Paradigmenwechsel? Der Prüfingenieur 26, 34–43 (2005)

    Google Scholar 

  34. Vogel, S.: Mathematische Dimension im Entwurf komplexer Systeme, TdSE 2015 (Tag des Systems Engineering) Ulm (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Vogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vogel, S., Rudolph, S. (2017). Automated Piping with Standardized Bends in Complex Systems Design. In: Fanmuy, G., Goubault, E., Krob, D., Stephan, F. (eds) Complex Systems Design & Management. CSDM 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-49103-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49103-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49102-8

  • Online ISBN: 978-3-319-49103-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics