Skip to main content

Combining Avoidance and Imitation to Improve Multi-agent Pedestrian Simulation

  • Conference paper
  • First Online:
AI*IA 2016 Advances in Artificial Intelligence (AI*IA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10037))

Included in the following conference series:

Abstract

Simulation of pedestrian and crowd dynamics is a consolidated application of agent-based models but it still presents room for improvement. Wayfinding, for instance, is a fundamental task for the application of such models on complex environments, but it still requires both empirical evidences as well as models better reflecting them. In this paper, a novel model for the simulation of pedestrian wayfinding is discussed: it is aimed at providing general mechanisms that can be calibrated to reproduce specific empirical evidences like a proxemic tendency to avoid congestion, but also an imitation mechanism to stimulate the exploitation of longer but less congested paths explored by emerging leaders. A demonstration of the simulated dynamics on a large scale scenario will be illustrated in the paper and the achieved results will show the achieved improvements compared to a basic floor field Cellular Automata model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The travel time that the agent can employ without encountering any congestion in the path, thus moving at its free flow speed.

References

  1. Vizzari, G., Bandini, S.: Studying pedestrian and crowd dynamics through integrated analysis and synthesis. IEEE Intell. Syst. 28(5), 56–60 (2013)

    Article  Google Scholar 

  2. Sassi, A., Borean, C., Giannantonio, R., Mamei, M., Mana, D., Zambonelli, F.: Crowd steering in public spaces: approaches and strategies. In: Wu, Y., Min, G., Georgalas, N., Hu, J., Atzori, L., Jin, X., Jarvis, S.A., Liu, L.C., Calvo, R.A. (eds.) 15th IEEE International Conference on Computer and Information Technology, CIT 2015, 14th IEEE International Conference on Ubiquitous Computing and Communications, IUCC 2015, 13th IEEE International Conference on Dependable, Autonomic and Secure Computing, DASC 2015, 13th IEEE International Conference on Pervasive Intelligence and Computing, PICom 2015, Liverpool, United Kingdom, October 26–28, 2015, pp. 2098–2105. IEEE (2015)

    Google Scholar 

  3. Challenger, R., Clegg, C.W., Robinson, M.A.: Understanding crowd behaviours: supporting evidence. Technical report, University of Leeds (2009)

    Google Scholar 

  4. Crociani, L., Piazzoni, A., Vizzari, G., Bandini, S.: When reactive agents are not enough: tactical level decisions in pedestrian simulation. Intell. Artif. 9(2), 163–177 (2015)

    Google Scholar 

  5. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A Stat. Mech. Appl. 295(3–4), 507–525 (2001)

    Article  MATH  Google Scholar 

  6. Wagoum, A.U.K., Seyfried, A., Holl, S.: Modelling dynamic route choice of pedestrians to assess the criticality of building evacuation. Adv. Complex Syst. 15(7), 15 (2012)

    Google Scholar 

  7. Kretz, T., Lehmann, K., Hofsäß, I., Leonhardt, A.: Dynamic assignment in microsimulations of pedestrians. Annual Meeting of the Transportation Research Board, 14-0941(2014)

    Google Scholar 

  8. Guo, R.Y., Huang, H.J.: Route choice in pedestrian evacuation: formulated using a potential field. J. Stat. Mech. Theory Exp. 2011(4), P04018 (2011)

    Article  Google Scholar 

  9. Lämmel, G., Klüpfel, H., Nagel, K.: The MATSim network flow model for traffic simulation adapted to large-scale emergency egress and an application to the evacuation of the Indonesian City of Padang in case of a tsunami warning, pedestrian behavior. In: Pedestrian Behavior: Models, Data Collection and Applications, pp. 245–265 (2009)

    Google Scholar 

  10. Lämmel, G., Seyfried, A., Steffen, B.: Large-scale and microscopic: a fast simulation approach for urban areas. In: Transportation Research Board 93rd Annual Meeting. Number 14-3890 (2014)

    Google Scholar 

  11. Crociani, L., Lämmel, G., Vizzari, G.: Multi-scale simulation for crowd management: a case study in an urban scenario. In: Proceedings of the 1st Workshop on Agent Based Modelling of Urban Systems (ABMUS 2016) (2016)

    Google Scholar 

  12. Sacerdoti, E.D.: Planning in a hierarchy of abstraction spaces. Artif. Intell. 5(2), 115–135 (1974)

    Article  MATH  Google Scholar 

  13. Kapadia, M., Beacco, A., Garcia, F.M., Reddy, V., Pelechano, N., Badler, N.I.: Multi-domain real-time planning in dynamic environments. In: Chai, J., Yu, Y., Kim, T., Sumner, R.W. (eds.) The ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2013, Anaheim, CA, USA, July 19–21, 2013, pp. 115–124. ACM (2013)

    Google Scholar 

  14. Levihn, M., Kaelbling, L.P., Lozano-Pérez, T., Stilman, M.: Foresight and reconsideration in hierarchical planning and execution. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, November 3–7, 2013, pp. 224–231. IEEE (2013)

    Google Scholar 

  15. Hall, E.T.: The Hidden Dimension. Doubleday, New York (1966)

    Google Scholar 

  16. Helbing, D., Schweitzer, F., Keltsch, J., Molnár, P.: Active walker model for the formation of human and animal trail systems. Phys. Rev. E 56(3), 2527–2539 (1997)

    Article  Google Scholar 

  17. Boltes, M., Seyfried, A.: Collecting pedestrian trajectories. Neurocomputing 100, 127–133 (2013)

    Article  Google Scholar 

  18. Michon, J.A.: A critical view of driver behavior models: What do we know, What should we do? In: Evans, L., Schwing, R.C. (eds.) Human Behavior and Traffic Safety, pp. 485–524. Springer, New York (1985)

    Chapter  Google Scholar 

  19. Bandini, S., Crociani, L., Vizzari, G.: An approach for managing heterogeneous speed profiles in cellular automata pedestrian models. Journal of Cellular Automata (in press)

    Google Scholar 

  20. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in multiagent systems. Auton. Agents Multi-Agent Syst. 14(1), 5–30 (2007)

    Article  Google Scholar 

  21. Weidmann, U.: Transporttechnik der Fussgänger - Transporttechnische Eigenschaftendes Fussgängerverkehrs (Literaturstudie). Literature Research 90, Institut füer Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau IVT an der ETH Zürich (1993)

    Google Scholar 

  22. Tolman, E.C.: Cognitive maps in rats and men. Psychol. Rev. 55(4), 189–208 (1948)

    Article  Google Scholar 

  23. Crociani, L., Invernizzi, A., Vizzari, G.: A hybrid agent architecture for enabling tactical level decisions in floor field approaches. Transp. Res. Procedia 2, 618–623 (2014)

    Article  Google Scholar 

  24. Andresen, E., Haensel, D., Chraibi, M., Seyfried, A.: Wayfinding and cognitive maps for pedestrian models. In: Proceedings of Traffic and Granular Flow 2015 (TGF2015), Springer (in press)

    Google Scholar 

  25. Bandini, S., Mondini, M., Vizzari, G.: Modelling negative interactions among pedestrians in high density situations. Transp. Res. Part C Emerg. Technol. 40, 251–270 (2014)

    Article  Google Scholar 

  26. Willis, A., Gjersoe, N., Havard, C., Kerridge, J., Kukla, R.: Human movement behaviour in urban spaces: implications for the design and modelling of effective pedestrian environments. Environ. Plan. B Plan. Design 31(6), 805–828 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Vizzari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Crociani, L., Vizzari, G., Bandini, S. (2016). Combining Avoidance and Imitation to Improve Multi-agent Pedestrian Simulation. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds) AI*IA 2016 Advances in Artificial Intelligence. AI*IA 2016. Lecture Notes in Computer Science(), vol 10037. Springer, Cham. https://doi.org/10.1007/978-3-319-49130-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49130-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49129-5

  • Online ISBN: 978-3-319-49130-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics