Skip to main content

A Model+Solver Approach to Concept Learning

  • Conference paper
  • First Online:
AI*IA 2016 Advances in Artificial Intelligence (AI*IA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10037))

Included in the following conference series:

  • 1256 Accesses

Abstract

Many Concept Learning problems can be seen as Constraint Satisfaction Problems (CSP). In this paper, we propose a model+solver approach to Concept Learning which combines the efficacy of Description Logics (DLs) in conceptual modeling with the efficiency of Answer Set Programming (ASP) solvers in dealing with CSPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.w3.org/TR/2009/REC-owl2-overview-20091027/.

  2. 2.

    http://archive.ics.uci.edu/ml/datasets/Trains.

  3. 3.

    http://dl-learner.org/Projects/DLLearner.

  4. 4.

    https://github.com/wolpertinger-reasoner/.

References

  1. Valiant, L.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

  2. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for data mining and machine learning. In: Fox, M., Poole, D. (eds.) Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, 11–15 July 2010. AAAI Press, Atlanta (2010)

    Google Scholar 

  3. Mitchell, T.M.: Generalization as search. Artif. Intell. 18, 203–226 (1982)

    Article  MathSciNet  Google Scholar 

  4. De Raedt, L.: Languages for learning and mining. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 25–30 January 2015, Austin, Texas, USA, pp. 4107–4111 (2015)

    Google Scholar 

  5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation and Applications, 2nd edn. Cambridge University Press, New York (2007)

    MATH  Google Scholar 

  6. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth answer set programming competition. Artif. Intell. 231, 151–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lisi, F.A.: A declarative modeling language for concept learning in description logics. In: Riguzzi, F., Železný, F. (eds.) ILP 2012. LNCS (LNAI), vol. 7842, pp. 151–165. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38812-5_11

    Chapter  Google Scholar 

  8. Horrocks, I., Patel-Schneider, P.F., Harmelen, F.: From SHIQ and RDF to OWL: the making of a web ontology language. J. Web Semant. 1(1), 7–26 (2003)

    Article  Google Scholar 

  9. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings, Tenth International Conference on Principles of Knowledge Representation and Reasoning, Lake District of the United Kingdom, 2–5 June 2006, pp. 57–67. AAAI Press (2006)

    Google Scholar 

  10. Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artif. Intell. 82(1–2), 353–367 (1996)

    Article  MathSciNet  Google Scholar 

  11. Reiter, R.: Equality and domain closure in first order databases. J. ACM 27, 235–249 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Küsters, R. (ed.): Non-Standard Inferences in Description Logics. LNCS (LNAI), vol. 2100. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  13. Lutz, C., Sattler, U., Tendera, L.: The complexity of finite model reasoning in description logics. Inf. Comput. 199(1–2), 132–171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gaggl, S.A., Rudolph, S., Schweizer, L.: Bound your models! how to make OWL an ASP modeling language. CoRR abs/1511.00924 (2015)

    Google Scholar 

  15. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive. New Gener. Comput. 9(3/4), 365–386 (1991)

    Article  MATH  Google Scholar 

  16. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)

    Article  Google Scholar 

  17. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Mach. Learn. 78(1–2), 203–250 (2010)

    Article  MathSciNet  Google Scholar 

  18. Michalski, R.: Pattern recognition as a rule-guided inductive inference. IEEE Trans. Pattern Anal. Mach. Intell. 2(4), 349–361 (1980)

    Article  MATH  Google Scholar 

  19. Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F.M., Ragone, A.: A unified framework for non-standard reasoning services in description logics. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI 2010–19th European Conference on Artificial Intelligence, Lisbon, Portugal, 16–20 August 2010, Proceedings, Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 479–484. IOS Press (2010)

    Google Scholar 

  20. Henkin, L.: Completeness in the theory of types. J. Symbolic Logic 15(2), 81–91 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kazakov, Y.: \({\cal{RIQ}}\) and \({\cal{SROIQ}}\) are harder than \({\cal{SHOIQ}}\). In: Principles of Knowledge Representation and Reasoning: Proceedings of the Eleventh International Conference, KR 2008, Sydney, Australia, September 16-19, 2008, pp. 274–284 (2008)

    Google Scholar 

  22. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. J. Artif. Intell. Res. 36, 165–228 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Raedt, L., Nijssen, S., O’Sullivan, B., Hentenryck, P.: Constraint programming meets machine learning and data mining (Dagstuhl seminar 11201). Dagstuhl Rep. 1(5), 61–83 (2011)

    Google Scholar 

  24. Nijssen, S., Guns, T., De Raedt, L.: Correlated itemset mining in ROC space: a constraint programming approach. In: Elder IV, J.F., Fogelman-Soulié, F., Flach, P.A., Zaki, M.J. (eds.) Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009, pp. 647–656. ACM (2009)

    Google Scholar 

  25. Guns, T., Nijssen, S., Raedt, L.: Evaluating pattern set mining strategies in a constraint programming framework. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011. LNCS (LNAI), vol. 6635, pp. 382–394. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20847-8_32

    Chapter  Google Scholar 

  26. Guns, T., Nijssen, S., Raedt, L.: Itemset mining: a constraint programming perspective. Artif. Intell. 175(12–13), 1951–1983 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guns, T., Nijssen, S., Raedt, L.: k-pattern set mining under constraints. IEEE Trans. Knowl. Data Eng. 25(2), 402–418 (2013)

    Article  Google Scholar 

  28. Guns, T., Dries, A., Tack, G., Nijssen, S., De Raedt, L.: MiningZinc: a modeling language for constraint-based mining. In: Rossi, F. (ed.) IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, 3–9 August 2013, IJCAI/AAAI, Beijing, China (2013)

    Google Scholar 

  29. Bruynooghe, M., Blockeel, H., Bogaerts, B., Cat, B., Pooter, S., Jansen, J., Labarre, A., Ramon, J., Denecker, M., Verwer, S.: Predicate logic as a modeling language: modeling and solving some machine learning and data mining problems with IDP3. Theory Pract. Logic Program. 15(6), 783–817 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Muggleton, S.H., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta-interpretive learning: application to grammatical inference. Mach. Learn. 94(1), 25–49 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1), 49–73 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Geffner, H.: Artificial intelligence: from programs to solvers. AI Commun. 27(1), 45–51 (2014)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the proposers of the bounded model semantics for the fruitful discussions about their work during a visit to Dresden and for the kind remote assistance in using Wolpertinger.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Alessandra Lisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Lisi, F.A. (2016). A Model+Solver Approach to Concept Learning. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds) AI*IA 2016 Advances in Artificial Intelligence. AI*IA 2016. Lecture Notes in Computer Science(), vol 10037. Springer, Cham. https://doi.org/10.1007/978-3-319-49130-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49130-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49129-5

  • Online ISBN: 978-3-319-49130-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics