Skip to main content

Enriching Preferences Using DBpedia and Wordnet

  • Conference paper
  • First Online:
Metadata and Semantics Research (MTSR 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 672))

Included in the following conference series:

  • 885 Accesses

Abstract

In Facebook, every like and interest is a preference. A like is an act of acknowledgement, which can be valuable if it is processed rightfully. In this work, the Facebook Page Like preferences of users are captured and these preferences are enriched by matching them with DBpedia and DaKick entities. To semantify these Facebook preferences, the free text search abilities of DBpedia and Allegrograph are used. WordNet is used to find the word similarities between preferences and ontology entities and evaluate the similarity for matching. Matched preferences are stored in FOAF profiles and two new ontologies are presented. SociaLike ontology is created to describe each preference with its properties and connections. Facebook profiles are converted into FOAF profiles and Facebook page information is stored inside the new FacebookAPI ontology. FOAF, SociaLike and FacebookAPI ontologies are used together to define user profile, represent and store user preferences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://wiki.dbpedia.org.

  2. 2.

    http://www.dakick.com.

  3. 3.

    https://wordnet.princeton.edu.

  4. 4.

    FOAF: www.foaf-project.org.

  5. 5.

    http://schema.org.

  6. 6.

    https://developers.google.com/freebase/.

  7. 7.

    http://www.bbc.co.uk/ontologies.

  8. 8.

    http://franz.com/agraph/allegrograph/.

  9. 9.

    http://www.w3.org/TR/sparql11-query/.

  10. 10.

    https://developers.facebook.com/docs/graph-api.

  11. 11.

    https://developers.facebook.com/docs/reference/fql/.

  12. 12.

    https://developers.facebook.com/docs/reference/fql/.

  13. 13.

    Restfb: http://restfb.com.

  14. 14.

    OAUTH 2.0: http://oauth.net/2/.

  15. 15.

    DBpedia Endpoint: http://dbpedia.org/sparql.

  16. 16.

    http://www.twitter.com.

  17. 17.

    http://www.foursquare.com.

  18. 18.

    https://developers.google.com/freebase/.

References

  1. Mirizzi, R., Di Noia, T., Ragone, A., Claudio Ostuni, V., Di Sciascio, E.: Movie recommendation with DBpedia. In: CEUR Workshop Proceedings, vol. 835, pp. 101–112 (2012)

    Google Scholar 

  2. Paulo Leal, J., Rodrigues, V., Queirós, R.: Computing semantic relatedness using DBPedia. In: 1st Symposium on Languages, Applications and Technologies (SLATE 2012), pp. 133–147 (2012)

    Google Scholar 

  3. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)

    Article  Google Scholar 

  5. Eyharabide, V., Amandi, A.: Ontology-based user profile learning. Appl. Intell. 36(4), 857–869 (2012)

    Article  Google Scholar 

  6. Weaver, J., Tarjan, P.: Facebook linked data via the graph API. Semant. Web 4(3), 245–250 (2013)

    Google Scholar 

  7. Sato, T., Fujita, M., Kobayashi, M., Ito, K.: Recommender system by grasping individual preference and influence from other users. In: Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining - ASONAM 2013, pp. 1345–1351 (2013)

    Google Scholar 

  8. Cantador, I., Castells, P., Bellog’ın, A.: An enhanced semantic layer for hybrid recommender systems: application to news recommendation. Int. J. Semant. Web Inf. Syst. 7(1), 44–78 (2011)

    Article  Google Scholar 

  9. Krauss, C., Braun, S., Arbanowski, S.: Preference ontologies based on social media for compensating the cold start problem. In: Proceedings of the 8th Workshop on Social Network Mining, Analysis, SNAKDD 2014, New York, NY, USA, pp. 12:1–12:4. ACM (2014)

    Google Scholar 

  10. Wittkower, D.E.: Facebook and Philosophy: What’s on Your Mind?. Popular Culture and Philosophy. Open Court, Chicago (2010)

    Google Scholar 

  11. Bursa, O., Sezer, E., Can, O., Unalir, M.O.: Using FOAF for interoperable and privacy protected healthcare information systems. In: Closs, S., Studer, R., Garoufallou, E., Sicilia, M.-A. (eds.) MTSR 2014. CCIS, vol. 478, pp. 154–161. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13674-5_15

    Google Scholar 

  12. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, New York, NY, USA, pp. 601–610. ACM (2014)

    Google Scholar 

  13. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, New York, NY, USA, pp. 697–706. ACM (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okan Bursa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bursa, O., Can, Ö., Sezer, E., Ünalır, M.O. (2016). Enriching Preferences Using DBpedia and Wordnet. In: Garoufallou, E., Subirats Coll, I., Stellato, A., Greenberg, J. (eds) Metadata and Semantics Research. MTSR 2016. Communications in Computer and Information Science, vol 672. Springer, Cham. https://doi.org/10.1007/978-3-319-49157-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49157-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49156-1

  • Online ISBN: 978-3-319-49157-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics