Abstract
Phoneme posteriorgrams are widely used for speech representation when performing query-by-example search on speech. These posteriorgrams are computed by obtaining the per-frame a posteriori probability of each unit in a phoneme recogniser, regardless the architecture of this phoneme recogniser. It is straightforward to believe that the higher the quality of the phone transcriptions generated by a phoneme recogniser, the higher the quality of its resulting phoneme posteriorgrams; however, to the best of our knowledge, no analysis exist proving this statement. This paper aims at investigating whether there is a correlation between the phone error rate of a recogniser and the maximum term weighted value obtained when performing query-by-example search on speech. Experiments on the Albayzin corpus in Spanish language showed a slight correlation between these two metrics, which suggests that the goodness of phoneme posteriorgram representation is somehow related to phone error rate, but there are other factors that affect their performance in search on speech tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The Spoken Term Detection (STD) 2006 Evaluation Plan, National Institute of Standards and Technology (NIST): http://www.itl.nist.gov/iad/mig/tests/std/2006/docs/std06-evalplan-v10.pdf.
References
Abad, A., Astudillo, R., Trancoso, I.: The L2F spoken web search system for Mediaeval 2013. In: Proceedings of the MediaEval 2013 Workshop (2013)
Anguera, X., Metze, F., Buzo, A., Szöke, I., Rodriguez-Fuentes, L.: The spoken web search task. In: Proceedings of the MediaEval 2013 Workshop (2013)
Anguera, X., Rodriguez-Fuentes, L., Szöke, I., Buzo, A., Metze, F.: Query by example search on speech at MediaEval 2014. In: Proceedings of the MediaEval 2014 Workshop (2014)
Buzo, A., Cucu, H., Molnar, I., Ionescu, B., Burileanu, C.: SpeeD @ MediaEval 2013: a phone recognition approach to spoken term detection. In: Proceedings of the MediaEval 2013 Workshop (2013)
Can, D., Saraclar, M.: Lattice indexing for spoken term detection. IEEE Trans. Audio Speech Lang. Process. 19(8), 2338–2347 (2011)
Chelba, C., Hazen, T.J., Saraclar, M.: Retrieval and browsing of spoken content. IEEE Sig. Process. Mag. 25(3), 39–49 (2008)
Gales, M.: Maximum likelihood linear transformations for hmm-based speech recognition. Comput. Speech Lang. 12(2), 75–98 (1998)
Garofolo, J., Auzanne, G., Voorhees, E.: The TREC spoken document retrieval task: a success story. In: Proceedings of the 4th International Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU) (2014)
Hazen, T., Shen, W., White, C.: Query-by-example spoken term detection using phonetic posteriorgram templates. In: IEEE Workshop on Automatic Speech Recognition & Understanding, ASRU, pp. 421–426 (2009)
Lopez-Otero, P., Docio-Fernandez, L., Garcia-Mateo, C.: Phonetic unit selection for cross-lingual query-by-example spoken term detection. In: IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 223–229 (2015)
Mantena, G., Achanta, S., Prahallad, K.: Query-by-example spoken term detection using frequency domain linear prediction and non-segmental dynamic time warping. IEEE/ACM Trans. Audio Speech Lang. Process. 22(5), 944–953 (2014)
Martinez, M., Lopez-Otero, P., Varela, R., Cardenal-Lopez, A., Docio-Fernandez, L., Garcia-Mateo, C.: GTM-UVigo systems for Albayzin 2014 search on speech evaluation. In: Iberspeech 2014: VIII Jornadas en Tecnologa del Habla and IV SLTech Workshop (2014)
Metze, F., Barnard, E., Davel, M., Heerden, C.V., Anguera, X., Gravier, G., Rajput, N.: The spoken web search task. In: Proceedings of the MediaEval 2012 Workshop (2012)
Metze, F., Rajput, N., Anguera, X., Davel, M., Gravier, G., Heerden, C.V., Mantena, G., Muscariello, A., Pradhallad, K., Szöke, I., Tejedor, J.: The spoken web search task at MediaEval 2011. In: Proceedings of ICASSP (2012)
Moreno, A., Poch, D., Bonafonte, A., Lleida, E., Llisterri, J., Mariño, J., Nadeu, C.: Albayzin speech database: design of the phonetic corpus. In: Proceedings of Eurospeech (1993)
Müller, M.: Information Retrieval for Music and Motion. Springer, Heidelberg (2007)
Povey, D., Kanevsky, D., Kingsbury, B., Ramabhadran, B., Saon, G., Visweswariah, K.: Boosted MMI for model and feature-space discriminative training. In: Proceedings of ICASSP, pp. 4057–4060 (2008)
Povey, D., Zhang, X., Khudanpur, S.: Parallel training of deep neural networks with natural gradient and parameter averaging. CoRR abs/1410.7455 (2014). http://arxiv.org/abs/1410.7455
Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., Vesely, K.: The Kaldi speech recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE Signal Processing Society (2011)
Rodriguez-Fuentes, L., Varona, A., Penagarikano, M.: GTTS-EHU systems for QUESST at MediaEval 2014. In: Proceedings of the MediaEval 2014 Workshop (2014)
Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoustics Speech Sig. Process. 26(1), 43–49 (1978)
Schwarz, P.: Phoneme recognition based on long temporal context. Ph.D. thesis, Brno University of Technology (2009)
Siohan, O., Bacchiani, M.: Fast vocabulary independent audio search using path based graph indexing. In: Proceedings of Interspeech/Eurospeech, pp. 53–56 (2005)
Szöke, I., Burget, L., Grézl, F., C̆ernocký, J., Ondel, L.: Calibration and fusion of query-by-example systems - BUT SWS 2013. In: Proceedings of ICASSP, pp. 7899–7903 (2014)
Szöke, I., Rodriguez-Fuentes, L., Buzo, A., Anguera, X., Metze, F., Proenca, J., Lojka, M., Xiong, X.: Query by example search on speech at Mediaeval 2015. In: Proceedings of the MediaEval 2015 Workshop (2015)
Szöke, I., Skácel, M., Burget, L.: BUT QUESST2014 system description. In: Proceedings of the MediaEval 2014 Workshop (2014)
Veselý, K., Ghoshal, A., Burget, L., Povey, D.: Sequence-discriminative training of deep neural networks. In: Proceedings of Interspeech, pp. 2345–2349, no. 8 (2013)
Yang, P., Xu, H., Xiao, X., Xie, L., Leung, C.C., Chen, H., Yu, J., Lv, H., Wang, L., Leow, S., Ma, B., Chng, E., Li, H.: The NNI query-by-example system for MediaEval 2014. In: Proceedings of the MediaEval 2014 Workshop (2014)
Acknowledgements
This research was funded by the Spanish Government under the project TEC2015-65345-P, the Galician Government through the research contract GRC2014/024 (Modalidade: Grupos de Referencia Competitiva 2014) and AtlantTIC Project CN2012/160, and by the European Regional Development Fund (ERDF).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Lopez-Otero, P., Docio-Fernandez, L., Garcia-Mateo, C. (2016). Better Phoneme Recognisers Lead to Better Phoneme Posteriorgrams for Search on Speech? An Experimental Analysis. In: Abad, A., et al. Advances in Speech and Language Technologies for Iberian Languages. IberSPEECH 2016. Lecture Notes in Computer Science(), vol 10077. Springer, Cham. https://doi.org/10.1007/978-3-319-49169-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-49169-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49168-4
Online ISBN: 978-3-319-49169-1
eBook Packages: Computer ScienceComputer Science (R0)