Abstract
The value of GPS data has generated a group of location-based services. Pick-up points recommendation by mining taxis’ trajectories can effectively both improve drivers’ profits and reduce oil consumption. However, existing methods always ignore the spatial-temporal features and the drivers’ preferences. Therefore, we propose to recommend a personalized sequence of pick-up points taking the two preceding factors into account. Firstly, we extract historical pick-up points from taxis’ trajectories and use these points to generate candidate ones by a novel approach of spatial-temporal analysis. Secondly, we devise a collaborative filtering algorithm to choose candidate points again. According to the location and the time of historical pick-up points, our system can give taxi-drivers an optimal sequence of pick-up points. Experimental results show that our method can obviously improve both the accuracy and the preference of candidate pick-up points for taxi-drivers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chang, H., Tai, Y., Hsu, J.Y.: Context-aware taxi demand hotspots prediction. Int. J. Bus. Intell. Data Min. 5(1), 3–18 (2010)
Li, B., Zhang, D., Sun, L., Chen, C., Li, S.: Hunting or waiting? Discovering passenger-finding strategies from a large-scale real-world taxi dataset. In: Proceedings of the 8th IEEE International Workshop on Managing Ubiquitous Communications and Services, pp. 63–68 (2011)
Yuan, N.J., Zheng, Y., Zhang, L., Xie, X.: T-Finder: a recommender system for finding passengers and vacant taxis. IEEE Trans. Knowl. Data Eng. 25(10), 2390–2403 (2013)
Zhang, M., Liu, J., Liu, Y., et al.: Recommending pick-up points for taxi-drivers based on spatio-temporal clustering. In: Proceedings of the 2nd IEEE International Conference on Cloud and Green Computing, pp. 67–72 (2012)
Yuan, J., Zheng, Y., Zhang, L., Xie, X., et al.: Where to find my next passenger. In: Proceedings of the 13th ACM International Conference on Ubiquitous Computing (2011)
Ge, Y., Xiong, H., Tu, A., et al.: An energy-efficient mobile recommender system. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 899–908 (2010)
Hou, Y., Li, X., Zhao, Y., et al.: Towards efficient vacant taxis cruising guidance. In: Proceedings of the IEEE Global Communications Conference, pp. 54–59 (2013)
Tang, H., Kerber, M., Huang, Q., et al.: Locating lucrative passengers for taxicab drivers. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 504–507 (2013)
Ding, Y., Liu, S., Pu, J., et al.: HUNTS: a trajectory recommendation system for effective and efficient hunting of taxi passengers. In: Proceedings of the 14th IEEE International Conference on Mobile Data Management, pp. 107–116 (2013)
Huang, J., Huang, X., Sun, H., et al.: Backward path growth for efficient mobile sequential recommendation. IEEE Trans. Knowl. Data Eng. 27(1), 46–60 (2015)
Hwang, R.H., Hsueh, Y.L., Chen, Y.T.: An effective taxi recommender system based on a spatio-temporal factor analysis model. Inf. Sci. 314, 28–40 (2015)
Powell, J.W., Huang, Y., Bastani, F., Ji, M.: Towards reducing taxicab cruising time using spatio-temporal profitability maps. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 242–260. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22922-0_15
Hu, H., Wu, Z., Mao, B., Zhuang, Y., Cao, J., Pan, J.: Pick-Up tree based route recommendation from taxi trajectories. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) WAIM 2012. LNCS, vol. 7418, pp. 471–483. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32281-5_45
Zhang, D., He, T.: P-Cruise: reducing cruising miles for taxicab networks. In: Proceedings of the 2012 IEEE 33rd Real-Time Systems Symposium, pp. 85–94 (2012)
Dong, H., Zhang, X., Dong, Y., et al.: Recommend a profitable cruising route for taxi drivers. In: Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems, pp. 2003–2008 (2014)
Wang, Y., Zheng, Y., Xue, Y.: Travel time estimation of a path using sparse trajectories. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 25–34 (2014)
Qu, M., Zhu, H., Liu, J., et al.: A cost-effective recommender system for taxi drivers. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 45–54 (2014)
Zhang, D., Sun, L., Li, B., et al.: Understanding taxi service strategies from taxi GPS traces. IEEE Trans. Intell. Transp. Syst. 16(1), 123–135 (2015)
Yang, W., Wang, X., Rahimi, S.M., Luo, J.: Recommending profitable taxi travel routes based on big taxi trajectories data. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS (LNAI), vol. 9078, pp. 370–382. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18032-8_29
Ma, S., Zheng, Y., Wolfson, O.: Real-time city-scale taxi ridesharing. IEEE Trans. Knowl. Data Eng. 27(7), 1782–1795 (2015)
Acknowledgments
This work is supported by National Nature Science Foundation of China (61572187, 61370227, 61572186), Hunan Provincial Natural Science Foundation of China (2015JJ2056), Hunan Provincial University Innovation Platform Open Fund Project of China (14K037), General project of Hunan Provincial Education Department (16C0642).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Liu, Y., Liu, J., Wang, J., Liao, Z., Tang, M. (2016). Recommending a Personalized Sequence of Pick-Up Points. In: Wang, G., Han, Y., Martínez Pérez, G. (eds) Advances in Services Computing. APSCC 2016. Lecture Notes in Computer Science(), vol 10065. Springer, Cham. https://doi.org/10.1007/978-3-319-49178-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-49178-3_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49177-6
Online ISBN: 978-3-319-49178-3
eBook Packages: Computer ScienceComputer Science (R0)