Skip to main content

Near-Optimal Self-stabilising Counting and Firing Squads

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10083))

  • 590 Accesses

Abstract

Consider a fully-connected synchronous distributed system of n nodes, where up to f nodes may be faulty and every node starts in an arbitrary initial state. In the synchronous counting problem, all nodes need to eventually agree on a counter that is increased by one modulo some C in each round. In the self-stabilising firing squad problem, the task is to eventually guarantee that all non-faulty nodes have simultaneous responses to external inputs: if a subset of the correct nodes receive an external “go” signal as input, then all correct nodes should agree on a round (in the not-too-distant future) in which to jointly output a “fire” signal. Moreover, no node should generate a “fire” signal without some correct node having previously received a “go” signal as input.

We present a framework reducing both tasks to binary consensus at very small cost while maintaining the resilience of the underlying consensus routine. Our results resolve various open questions on the two problems, most prominently whether (communication-efficient) self-stabilising Byzantine firing squads or sublinear-time solutions for either problem exist. For example, we obtain a deterministic algorithm for self-stabilising Byzantine firing squads with optimal resilience \(f<n/3\), asymptotically optimal stabilisation and response time O(f), and message size \(O(\log f)\). As our framework does not restrict the type of consensus routines used, we can also obtain efficient randomised solutions, and it is straightforward to adapt our framework to allow \(f<n/2\) omission or \(f<n\) crash faults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing Byzantine tolerant digital clock synchronization. In: Proceedings of 27th Annual ACM Symposium on Principles of Distributed Computing (PODC 2008), pp. 385–394. ACM Press (2008). doi:10.1145/1400751.1400802

  2. Berman, P., Garay, J.A., Perry, K.J.: Towards optimal distributed consensus. In: Proceedings of 30th Annual Symposium on Foundations of Computer Science (FOCS 1989), pp. 410–415. IEEE (1989). doi:10.1109/SFCS.1989.63511

  3. Burns, J.E., Lynch, N.A.: The Byzantine firing squad problem. Adv. Comput. Res. 4, 147–161 (1987)

    MathSciNet  Google Scholar 

  4. Dolev, D., Függer, M., Lenzen, C., Schmid, U., Steininger, A.: Fault-tolerant distributed systems in hardware. Bull. EATCS (116) (2015). http://bulletin.eatcs.org/index.php/beatcs/issue/view/18

  5. Dolev, D., Heljanko, K., Järvisalo, M., Korhonen, J.H., Lenzen, C., Rybicki, J., Suomela, J., Wieringa, S.: Synchronous counting and computational algorithm design. J. Comput. Syst. Sci. 82(2), 310–332 (2016). doi:10.1016/j.jcss.2015.09.002

    Article  MathSciNet  MATH  Google Scholar 

  6. Dolev, D., Hoch, E.N.: On self-stabilizing synchronous actions despite byzantine attacks. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 193–207. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75142-7_17

    Chapter  Google Scholar 

  7. Dolev, D., Hoch, E.N., Moses, Y.: An optimal self-stabilizing firing squad. SIAM J. Comput. 41(2), 415–435 (2012). doi:10.1137/090776512

    Article  MathSciNet  MATH  Google Scholar 

  8. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of Byzantine faults. J. ACM 51(5), 780–799 (2004). doi:10.1145/1017460.1017463

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoch, E.N., Dolev, D., Daliot, A.: Self-stabilizing Byzantine digital clock synchronization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 350–362. Springer, Heidelberg (2006). doi:10.1007/978-3-540-49823-0_25

    Chapter  Google Scholar 

  11. King, V., Saia, J.: Breaking the \(O(n^2)\) bit barrier. J. ACM 58(4), 1–24 (2011). doi:10.1145/1989727.1989732

    Article  MathSciNet  MATH  Google Scholar 

  12. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982). doi:10.1145/357172.357176

    Article  MATH  Google Scholar 

  13. Lenzen, C., Függer, M., Hofstätter, M., Schmid, U.: Efficient construction of global time in SoCs despite arbitrary faults. In: Proceedings of 16th Euromicro Conference on Digital System Design (DSD 2013), pp. 142–151 (2013). doi:10.1109/DSD.2013.97

  14. Lenzen, C., Rybicki, J.: Efficient counting with optimal resilience. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 16–30. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48653-5_2

    Chapter  Google Scholar 

  15. Lenzen, C., Rybicki, J.: Near-optimal self-stabilising counting and firing squads, manuscript, full version. arXiv:1608.00214 (2016)

  16. Lenzen, C., Rybicki, J., Suomela, J.: Towards optimal synchronous counting. In: Proceedings of 34th ACM Symposium on Principles of Distributed Computing (PODC 2015), pp. 441–450. ACM (2015)

    Google Scholar 

  17. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco (1996)

    MATH  Google Scholar 

  18. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980). doi:10.1145/322186.322188

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Danny Dolev for inspiring discussions and valuable comments, especially concerning silent consensus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Rybicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Lenzen, C., Rybicki, J. (2016). Near-Optimal Self-stabilising Counting and Firing Squads. In: Bonakdarpour, B., Petit, F. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2016. Lecture Notes in Computer Science(), vol 10083. Springer, Cham. https://doi.org/10.1007/978-3-319-49259-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49259-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49258-2

  • Online ISBN: 978-3-319-49259-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics