Skip to main content

On the Power of Oracle \(\varOmega ?\) for Self-Stabilizing Leader Election in Population Protocols

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10083))

Abstract

This paper considers the fundamental problem of self-stabilizing leader election (SSLE) in the model of population protocols. In this model an unknown number of asynchronous, anonymous and finite state mobile agents interact in pairs. SSLE has been shown to be impossible in this model without additional assumptions. This impossibility can be circumvented for instance by augmenting the system with an oracle (an external module providing supplementary information useful to solve a problem). Fischer and Jiang have proposed solutions to SSLE, for complete communication graphs and rings, using the oracle \(\varOmega ?\), called the eventual leader detector. In this paper, we investigate the power of \(\varOmega ?\) on larger families of graphs. We present two important results.

Our first result states that \(\varOmega ?\) is powerful enough to allow solving SSLE over arbitrary communication graphs of bounded degree. Our second result states that, \(\varOmega ?\) is the weakest (in the sense of Chandra, Hadzilacos and Toueg) for solving SSLE over rings. We also prove that this result does not extend to all graphs; in particular not to the family of arbitrary graphs of bounded degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is in contrast to the non-uniform solutions given to SSLE over rings in [4] that does not use oracles.

  2. 2.

    The input alphabet can be viewed as the set of possible values given to the agents from the outside environment, like sensed values, output values from another protocol or from an oracle. The output alphabet can be viewed as the set of values that the protocol itself outputs outside. X and Y are both the interface values of the protocol.

  3. 3.

    In [18], where \(\varOmega ?\) has been introduced, the oracle is defined in a rather informal way.

  4. 4.

    In this paper, we are only interested in comparing oracles as far as self-stabilization is concerned.

References

  1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)

    Article  MATH  Google Scholar 

  2. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. Distrib. Comput. 21(3), 183–199 (2008)

    Article  MATH  Google Scholar 

  3. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distrib. Comput. 20(4), 279–304 (2007)

    Article  MATH  Google Scholar 

  4. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols. ACM Trans. Auton. Adapt. Syst. 3(4), 13 (2008). Kindly check and confirm whether the inserted page range for Ref. [4] is correct. Amend if necessary.

    Article  Google Scholar 

  5. Beauquier, J., Blanchard, P., Burman, J.: Self-stabilizing leader election in population protocols over arbitrary communication graphs. In: Baldoni, R., Nisse, N., Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 38–52. Springer, Heidelberg (2013). doi:10.1007/978-3-319-03850-6_4

    Chapter  Google Scholar 

  6. Beauquier, J., Blanchard, P., Burman, J., Denysyuk, O.: On the power of oracle omega? for self-stabilizing leader election in population protocols. Technical report, INRIA (2016). http://hal.archives-ouvertes.fr/hal-00839759

  7. Beauquier, J., Blanchard, P., Burman, J., Kutten, S.: The weakest Oracle for symmetric consensus in population protocols. In: Bose, P., Gąsieniec, L.A., Römer, K., Wattenhofer, R. (eds.) ALGOSENSORS 2015. LNCS, vol. 9536, pp. 41–56. Springer, Heidelberg (2015). doi:10.1007/978-3-319-28472-9_4

    Chapter  Google Scholar 

  8. Beauquier, J., Burman, J.: Self-stabilizing synchronization in mobile sensor networks with covering. In: Rajaraman, R., Moscibroda, T., Dunkels, A., Scaglione, A. (eds.) DCOSS 2010. LNCS, vol. 6131, pp. 362–378. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13651-1_26

    Chapter  Google Scholar 

  9. Beauquier, J., Burman, J., Clement, J., Kutten, S.: On utilizing speed in networks of mobile agents. In: PODC, pp. 305–314. ACM (2010)

    Google Scholar 

  10. Bonnet, F., Raynal, M.: Anonymous asynchronous systems: the case of failure detectors. In: DISC, pp. 206–220 (2010)

    Google Scholar 

  11. Cai, S., Izumi, T., Wada, K.: How to prove impossibility under global fairness: on space complexity of self-stabilizing leader election on a population protocol model. Theory Comput. Syst. 50(3), 433–445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Canepa, D., Potop-Butucaru, M.G.: Self-stabilizing tiny interaction protocols. In: WRAS, pp. 10:1–10:6 (2010)

    Google Scholar 

  13. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus. J. ACM 43(4), 685–722 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J. ACM 43(2), 225–267 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Charron-Bost, B., Hutle, M., Widder, J.: In search of lost time. Inf. Process. Lett. 110(21), 928–933 (2010)

    Article  MathSciNet  Google Scholar 

  16. Cornejo, A., Lynch, N.A., Sastry, S.: Asynchronous failure detectors. In: PODC, pp. 243–252 (2012)

    Google Scholar 

  17. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  18. Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-state anonymous agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 395–409. Springer, Heidelberg (2006). doi:10.1007/11945529_28

    Chapter  Google Scholar 

  19. Fischer, M.H., Lynch, N.A., Paterson, M.S.: Impossibility of consensus with one faulty process. J. ACM 32(2), 374–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols. Theor. Comput. Sci. 412(22), 2434–2450 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mizoguchi, R., Ono, H., Kijima, S., Yamashita, M.: On space complexity of self-stabilizing leader election in mediated population protocol. Distrib. Comput. 25(6), 451–460 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janna Burman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Beauquier, J., Blanchard, P., Burman, J., Denysyuk, O. (2016). On the Power of Oracle \(\varOmega ?\) for Self-Stabilizing Leader Election in Population Protocols. In: Bonakdarpour, B., Petit, F. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2016. Lecture Notes in Computer Science(), vol 10083. Springer, Cham. https://doi.org/10.1007/978-3-319-49259-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49259-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49258-2

  • Online ISBN: 978-3-319-49259-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics