Skip to main content

Flocking with Oblivious Robots

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10083))

Abstract

We propose a new self-stabilizing flocking algorithm for oblivious robot networks, and prove its correctness. With this algorithm, a flock head emerges from a uniform flock of robots, and the algorithm allows those robots to follow the head, whatever its direction on the plane. Robots are oblivious in that they do not recall the result of their previous computations and do not share a common coordinate system.

The novelty of our approach consists in identifying the sufficient conditions to set on the flock pattern placement and the velocity of the flock-head (rotation, translation or speed), such that the flock head and the flock pattern are both preserved while the flock moves (following the head). Additionally, our system is both self-healing and self-stabilizing. In case the head leaves (e.g., disappears or is damaged) the flock agrees on a new head and follows its trajectory. Also, robots keep no record of their previous computations and we make no assumption on their initial position. The step complexity of our solution is O(n).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The curent work is supported by the ANR project R-DISCOVER that brings together roboticians and computer scientiests.

  2. 2.

    A round is a fragment of execution where each robot in the system executes its actions.

References

  1. Ben-Shahar, O., Dolev, S., Dolgin, A., Michael, S.: Direction election in flocking swarms. Ad Hoc Netw. 12, 250–258 (2014)

    Article  Google Scholar 

  2. Canepa, D., Défago, X., Izumi, T., Potop-Butucaru, M.: Emergent velocity agreement in robot networks. CoRR, abs/1105.4082 (2011)

    Google Scholar 

  3. Canepa, D., Potop-Butucaru, M.G.: Stabilizing flocking via leader election in robot networks. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 52–66. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76627-8_7

    Chapter  Google Scholar 

  4. Chazelle, B.: The convergence of bird flocking. J. ACM 61(4), 21:1–21:35 (2014)

    Google Scholar 

  5. Dieudonné, Y., Petit, F.: Circle formation of weak robots and lyndon words. Inf. Process. Lett. 101(4), 156–162 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dieudonné, Y., Petit, F., Villain, V.: Leader election problem versus pattern formation problem. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 267–281. Springer, Heidelberg (2010)

    Google Scholar 

  7. Dolev, S.: Self-stabilization. MIT Press (2000)

    Google Scholar 

  8. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Pattern formation by anonymous robots without chirality. In: Proceedings of the SIROCCO, pp. 147–162 (2001)

    Google Scholar 

  9. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3), 412–447 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gervasi, V., Prencipe, G.: Flocking by a set of autonomous mobile robots. Technical report TR-01-24, Universitat di Pisa (2001)

    Google Scholar 

  11. Gervasi, V., Prencipe, G.: Coordination without communication: the case of the flocking problem. Discrete Appl. Math. 144(3), 324–344 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gu, D., Wang, Z.: Leader-follower flocking: algorithms and experiments. IEEE Trans. Control Syst. Technol. 17(5), 1211–1219 (2009)

    Article  Google Scholar 

  13. Huang, A.Q.J., Farritor, S.M., Goddard, S.: Localization, follow-the-leader control of a heterogeneous group of mobile robots. IEEE ASME Trans. Mechatron. 11, 205–215 (2006)

    Google Scholar 

  14. La, H.M., Sheng, W.: Flocking control of a mobile sensor network to track and observe a moving target. In: Proceedings of the ICRA, pp. 3129–3134, May 2009

    Google Scholar 

  15. La, H.M., Sheng, W.: Flocking control of multiple agents in noisy environments. In: Proceedings of the ICRA, pp. 4964–4969, May 2010

    Google Scholar 

  16. Lee, G., Chong, N.-Y.: Adaptive flocking of robot swarms: algorithms and properties IEICE Trans. 91-B(9), 2848–2855 (2008)

    Google Scholar 

  17. Lindhe, M.: A flocking and obstacle avoidance algorithm for mobile robots. Ph.D. thesis, KTH Stockholm (2004)

    Google Scholar 

  18. Moeslinger, C., Schmickl, T., Crailsheim, K.: Emergent flocking with low-end swarm robots. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 424–431. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15461-4_40

    Chapter  Google Scholar 

  19. Renaud, P., Cervera, E., Martiner, P.: Towards a reliable vision-based mobile robot formation control. IEEE/ASME Trans. Mechatron. 4, 3176–3181 (2004)

    Google Scholar 

  20. Souissi, S., Izumi, T., Wada, K.: Oracle-based flocking of mobile robots in crash-recovery model. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 683–697. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05118-0_47

    Chapter  Google Scholar 

  21. Suzuki, I., Yamashita, M.: A theory of distributed anonymous mobile robots formation and agreement problems. Technical report, Wisconsin Univ. Milwaukee Dept. of Electrical Engineering and Computer Science 6 (1994)

    Google Scholar 

  22. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots–formation and agreement problems. In: Proceedings of the 3rd International Colloquium on Structural Information and Communication Complexity (SIROCCO 1996), Siena, Italy, June 1996

    Google Scholar 

  23. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, Z., Gu, D.: A local sensor based leader-follower flocking system. In: Proceedings of the ICRA, pp. 3790–3795, May 2008

    Google Scholar 

  25. Yang, Y., Souissi, S., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group of autonomous mobile robots. J. Syst. Softw. 84(1), 29–36 (2011)

    Google Scholar 

Download references

Acknowledgements

The last author would like to thank Ted Herman for helpful discussions related to flocking in biological systems that inspired the current specification and also the potential use of the energy constraints in order to conserve the head energy. We also would like to thank Shlomi Dolev for pointing us [1] and [4] that investigate the problem in a different model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Potop-Butucaru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Canepa, D., Defago, X., Izumi, T., Potop-Butucaru, M. (2016). Flocking with Oblivious Robots. In: Bonakdarpour, B., Petit, F. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2016. Lecture Notes in Computer Science(), vol 10083. Springer, Cham. https://doi.org/10.1007/978-3-319-49259-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49259-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49258-2

  • Online ISBN: 978-3-319-49259-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics