Skip to main content

Resolving the Manufacturing Cell Design Problem Using the Flower Pollination Algorithm

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2016)

Abstract

The Manufacturing cell design problem focuses on the creation of an optimal distribution of the machinery on a productive plant, through the creation of highly independent cells where the parts of certain products are processed. The main objective is to reduce the movements between this cells, decreasing production times, costs and getting other advantages. To find solutions to this problem, in this paper, the usage of the Flower Pollination Algorithm is proposed, which is one of the many nature-based algorithms, which in this case is inspired in the Pollination of the flowers, and has shown great capacities in the resolution of complex problems. Experimental results are shown, with 90 instances taken from Boctor’s experiments, where the optimum is achieved in all them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Storch, R.L.: Group technology. College of Engineering, University of Washington (2010)

    Google Scholar 

  2. Atmani, A., Lashkari, R., Caron, R.: A mathematical programming approach to joint cell formation and operation allocation in cellular manufacturing. Int. J. Prod. Res. 33(1), 1–15 (1995)

    Article  MATH  Google Scholar 

  3. Adil, G., Rajamani, D., Strong, D.: A mathematical model for cell formation considering investment and operational costs. Eur. J. Oper. Res. 69(3), 330–341 (1993)

    Article  MATH  Google Scholar 

  4. Kusiak, A., Chow, W.: Efficient solving of the group technology problem. J. Manuf. Syst. 6(2), 117124 (1987)

    Article  Google Scholar 

  5. Purcheck, G.F.K.: A linear-programming method for the combinatorial grouping of an incomplete set. J. Cybern. 5(4), 51–78 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Medina, P.D., Cruz, E.A., Pinzon, M.: Generacin de celdas de manufactura usando el algoritmo de ordenamiento binario (aob). Scientia et Technica Ao XVI(44), 106–110 (2010)

    Google Scholar 

  7. Kusiak, A.: The part families problem in flexible manufacturing systems. Ann. Oper. Res. 3(6), 277–300 (1985)

    Article  Google Scholar 

  8. Shargal, M., Shekhar, S., Irani, S.: Evaluation of search algorithms and clustering efficiency measures for machine-part matrix clustering. IIE Trans. 27(1), 43–59 (1995)

    Article  Google Scholar 

  9. Seifoddini, H., Hsu, C.-P.: Comparative study of similarity coefficients and clustering algorithms in cellular manufacturing. J. Manuf.Syst. 13(2), 119–127 (1994)

    Article  Google Scholar 

  10. Srinivasan, G.: A clustering algorithm for machine cell formation in group technology using minimum spanning tree. Int. J. Prod. Res. 32(9), 2149–2158 (1994)

    Article  MATH  Google Scholar 

  11. Deutsch, S., Freeman, S., Helander, M.: Manufacturing cell formation using an improved p-median model. Comput. Ind. Eng. 34(1), 135–146 (1998)

    Article  Google Scholar 

  12. Soto, R., Crawford, B., Almonacid, B., Paredes, F.: A migrating birds optimization algorithm for machine-part cell formation problems. In: Sidorov, G., Galicia-Haro, S.N. (eds.) MICAI 2015. LNCS (LNAI), vol. 9413, pp. 270–281. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27060-9_22

    Chapter  Google Scholar 

  13. Soto, R., Crawford, B., Almonacid, B., Paredes, F.: Efficient parallel sorting for migrating birds optimization when solving machine-part cell formation problems. Sci. Program. 2016 (2016). https://www.hindawi.com/journals/sp/2016/9402503/

  14. Xambre, A.R., Vilarinho, P.M.: A simulated annealing approach for manufacturing cell formation with multiple identical machines. Eur. J. Oper. Res. 151(2), 434–446 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol (2008)

    Google Scholar 

  16. Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. Adv. Sci. Lett. 102, 703–712 (1993)

    Google Scholar 

  17. Li, L., Shao, Z., Quian, J.: An optimizing method based on autonomous animals: fish-swarm algorithm. Syst. Eng. Theory Pract. 22(11), 32–38 (2002)

    Google Scholar 

  18. Oliveira, S., Ribeiro, J., Seok, S.: A spectral clustering algorithm for manufacturing cell formation. Comput. Ind. Eng. 57(3), 1008–1014 (2009)

    Article  Google Scholar 

  19. Durn, O., Rodriguez, N., Consalter, L.: Collaborative particle swarm optimization with a data mining technique for manufacturing cell design. Expert Syst. Appl. 37(2), 1563–1567 (2010)

    Article  Google Scholar 

  20. Shafer, S.M., Rogers, D.F.: A goal programming approach to the cell formation problem. J. Oper. Manag. 10(1), 28–43 (1991)

    Article  Google Scholar 

  21. Aljaber, N., Baek, W., Chen, C.-L.: A tabu search approach to the cell formation problem. Comput. Ind. Eng. 32(1), 169–185 (1997)

    Article  Google Scholar 

  22. Lozano, S., Daz, A., Egua, I., Onieva, L.: A one-step tabu search algorithm for manufacturing cell design. J. Oper. Res. Soc. 50(5), 209–516 (1999)

    Article  Google Scholar 

  23. Wu, T., Chang, C., Chung, S.: A simulated annealing algorithm for manufacturing cell formation problems. Expert Syst. Appl: Int. J. 34(3), 1609–1617 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Ricardo Soto is supported by Grant CONICYT/FONDECYT/REGULAR/1160455, Broderick Crawford is supported by Grant CONICYT/FONDECYT/REGULAR/1140897, Rodrigo Olivares is supported by Postgraduate Grant Pontificia Universidad Católica de Valparaíso, Chile (INF-PUCV 2015), and Boris Almonacid is supported by Postgraduate Grant Pontificia Universidad Católica de Valparaíso, Chile (VRIEA-PUCV 2016 and INF-PUCV 2015), by Animal Behavior Society, USA (Developing Nations Research Awards 2016) and by Ph.D (h.c) Sonia Alvarez, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Olivares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Soto, R. et al. (2016). Resolving the Manufacturing Cell Design Problem Using the Flower Pollination Algorithm. In: Sombattheera, C., Stolzenburg, F., Lin, F., Nayak, A. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2016. Lecture Notes in Computer Science(), vol 10053. Springer, Cham. https://doi.org/10.1007/978-3-319-49397-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49397-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49396-1

  • Online ISBN: 978-3-319-49397-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics